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The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical
systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its
simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the
strong coupling regime, has turned it into a widespread technique, being the first method of choice in most
works on the subject. However, such a technique finds strong practical and conceptual complications when
one tries to apply it to situations in which the classical long-time solution is time dependent, a most
prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme
adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows
us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection
between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal
translations. On the practical side, the method keeps the simplicity and linear scaling with the size
of the problem (number of modes) characteristic of standard linearization, making it applicable to large

(many-body) systems.
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Introduction.—The advent of modern quantum technol-
ogies has triggered the discovery of a plethora of optical,
atomic, and solid state devices working in the quantum
regime [1] (see also the starting paragraph of Ref. [2] and
the references therein). A first-principles approach leads to
a description of such devices as open quantum systems
evolving according to nonlinear Hamiltonians and inco-
herent processes like dissipation [3—-6]. Mathematically,
one has to face master equations for the state of the system
or quantum Langevin equations for its operators, which are
in general impossible to solve exactly.

On the other hand, quantum nonlinearities are very
difficult to observe in the laboratory and therefore most
experiments are well described by effective linear models.
The most widespread method for obtaining such linear
models starting from nonlinear ones is the so-called
standard linearization [7,8]. This consists of a Gaussian-
state ansatz centered at the solution of the system’s non-
linear equations in the classical limit [9]. The method
combines incredible simplicity with pretty good accuracy,
but can only be applied to stable solutions that are either
stationary or follow trivially an external temporal modu-
lation. This excludes the important case of systems that
undergo self-oscillations. These are a particular case of a
more general class of systems that being invariant under
continuous transformations of some kind (e.g., time trans-
lations in the aforementioned case) develop a solution that
breaks that invariance via spontaneous symmetry breaking.
This is because Goldstone’s theorem implies the existence
of a zero eigenvalue of the linear stability matrix, and hence
a direction of phase space that is not damped [10-14].
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Standard linearization has been generalized to deal with
the spontaneous symmetry breaking of spatial, polarization,
and phase symmetries [10-19]. The method relies on
phase-space representations of the state to keep track of
the phase-space variable associated with the system’s
invariance, which will carry the largest part of the fluctua-
tions. Then, the theory can be linearized with respect to any
other phase-space variable.

However, an extension capable of dealing with self-
pulsing solutions is still missing, because in this case
symmetry breaking occurs in the very same variable that
parametrizes the dynamics of the system: time. While this
complicates enormously the problem compared to the other
type of symmetries, here we succeed in generalizing
standard linearization to one of the most prominent cases
of self-pulsing solutions: those that are periodic in time,
describing then a closed curve in phase space known as a
periodic orbit or limit cycle [20-23]. These are ubiquitous
to many optical phenomena, e.g., lasing [24-27], second-
harmonic generation [7,28,29], and optomechanics [30-37],
among others [38,39]. We show that the method approx-
imates the quantum state of the system by a mixture of
Gaussian states localized around the closed phase-space
trajectory, and we give physical meaning to the way in which
quantum fluctuations are distributed along these Gaussian
states.

For convenience, we introduce the method for single-
mode problems, using the driven quantum Van der Pol
(VdP) oscillator [40-42] as an example. The simplicity of
this model will allow for comparisons with full numerical
simulations. The generalization to multimode problems is
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straightforward, and will be explored in the future for more
practical and complex problems such as optomechanical
cavities deep into the parametric instability regime [43,44].
Moreover, the complexity of the method scales only linearly
with the number of modes, providing then an efficient route
towards the analysis of many-body systems out of equilib-
rium such as optomechanical arrays [45-49] in the self-
oscillating regime.

Van der Pol model.—The quantum model for a driven
VdP oscillator consists of a single bosonic mode with
annihilation operator @, whose state p evolves according to
the master equation [40,41]

b _\FE i _avtingtas| 1D 5
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where D,[p] =27 pJ = J'Tp—pJ'J and the bosonic
operators satisfy canonical commutation relations
[@,a’] = 1. The Hamiltonian includes a coherent drive at
rate F/,/y > 0 detuned by A with respect to the natural
oscillation frequency of the oscillator (note that we work in
a picture rotating at the driving frequency). The model
contains two incoherent terms as well, the first one
corresponding to pairs of excitations lost irreversibly at
rate y (nonlinear losses), and the second one to linear
pumping. The rate of the latter is used to normalize the rest
of the rates and frequencies, while its inverse normalizes
time, so that 7, y, F, and A are dimensionless. We show
later that with these choices the classical phase diagram of
the system is determined uniquely by F and A, while y
determines the strength of the quantum fluctuations.

The method is best introduced by mapping the master
equation to a set of stochastic equations. This can be done
with the help of phase-space quasiprobability distributions
[3.4,6,50] such as standard Wigner, Husimi, or Glauber-
Sudharsan representations. Here, we choose the positive P
representation [3,4,51,52] because, unlike the previous
representations, it always leads to stochastic equations
equivalent to the master equation without any approxima-
tion. This representation associates two independent sto-
chastic variables that we denote by f/,/y and "/, /7 with
the annihilation and creation operators & and a', respec-
tively, in such a way that normally ordered quantum
expectation values and stochastic averages are related by
(a'mary = (prmpr) /ymtm/2 with m,n € N. Using stan-
dard techniques [3,4,51-53], we show in Ref. [54] that the
stochastic amplitudes evolve according to

B=F+(1+iA=p"B)B+ 7[V2(r) +ipn(r)]. (2a)

BY=F+(1—iA=B*B)p++ /7[V2E (2) =i n* ()]
(2b)

where 77(7), n" (), and &() are independent white Gaussian
noises (real the first two, and complex the last one) [54].

Limit cycles in the classical limit—Coming from a
normally ordered representation (where vacuum noise is
already taken into account in the ordering), the equations
above predict a large-amplitude coherent state fory — 0. We
talk then about the classical limit. The remaining determin-
istic equation = F + (1 4+ iA — |$[?)f is a paradigm for
synchronization phenomena [41], and its phase diagram is
well known (we provide an overview of it in Ref. [54]). In
general terms, its stationary solutions, corresponding to
solutions oscillating at the driving frequency, are stable only
provided a strong enough drive is fed; otherwise, the
oscillations are not synchronized to the drive, so that for
long times the system ends up in a nontrivial stable periodic
solution f3(z) = B(z + T). In Fig. 1 we show an example of
such limit cycle motion, where it can be appreciated that it
describes a closed curve in phase space [Fig. 1(a)], with
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FIG. 1. Limit cycle emerging for A = V0.4 and F =+/0.1.
(a) We show in gray the closed trajectory described in phase
space. The arrows refer to the direction of the Floquet eigen-
vectors in selected points of the cycle. (b) Time evolution of the
cycle’s absolute value and phase. (c) Evolution of the variance of
0, see Eqs. (3) and (8). Note that y, which sets how relevant
quantum fluctuations are, appears just as an absolute scale for
the variance, whose dependence on time is set by the limit
cycle’s shape.
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an absolute value and a phase that oscillate periodically
[Fig. 1(b)]. Note that analytical solutions for these limit
cycles exist only in limited cases, and therefore one needs to
find them numerically in general.

Linearization around limit cycles.—We are now able
to introduce the linearization technique for quantum fluc-
tuations around limit cycles. We start by expanding the
stochastic amplitudes as

Bz +0) = B(r+0) + b(z+0), (3a)

prz+60)=p(+6)+b"(z+0). (3b)

Here, 6 determines at which point of the cycle the solution
B(z + ) starts for 7 = 0, and it is precisely the parameter
that is not fixed by the classical equations of motion:
p(z +6) is a solution of the equations for any choice of
6. Owed to this symmetry, quantum fluctuations cannot be
considered small in arbitrary points and directions of phase
space, as nothing prevents them from acting on 0 without
resistance. Hence, in order for any linearized theory of
quantum fluctuations to work, @ has to be taken as a variable
itself (making it time dependent in the expansion above) and

only then can the fluctuations b and b™ be taken as small

quantities. In addition, 6 can be taken as a small quantity as
well, since variations of @ are induced by quantum noise,
which is weak in the region of interest. Introducing Eq. (3) in
Eq. (2), to first order in the small variables (including noise)
we then get [54]

b(7) + po(v)0(z) = L(7)b(7) + /rm(z),  (4)

where b= (b.b")", py=(0,4.9,8")", n(z) = [V2(r)+
iB(0)n(r), V2&* () — ip*(z)n* (¢)]”, with the T superindex
denoting “transpose” (not to confuse with the time period),
and

L-2Bef +ia P
L(z) = _ _
o= o) @

is the linear stability matrix. Note that the noise correlations
can be written in the compact form (n;(z)n,(7')) =

Nji(7)6(r —7'), where N ; are the elements of the diffusion

matrix

) 2 ) ‘ ()

2 —p()

As we will see, the introduction of () as an explicit
variable will allow us to describe properly spontaneous
temporal symmetry breaking and its associated undamped
phase-space direction.

Floquet method and eigenvectors.—The main difference
of Eq. (4) with respect to the linearized Langevin equations
found in previous linearization methods is the time perio-
dicity of py(z) and L(z). We deal with this by applying
Floquet theory [22,55] as we explain next.

N(@) = (

Let us define the fundamental matrix R(r), which
satisfies the initial value problem R(z) = L(z)R(z) with
R(0) = Z, the latter being the identity matrix. From it, we
further define the matrix M through exp(MT) = R(T),
and the T-periodic matrix P(z) = R(z) exp(—Mrz). Given
the eigensystem {v;, W;;u;}, o of M, composed of right
and left orthogonal (w;vl = 0;) eigenvectors satisfying
Mv; = p;v; and wj-/\/l = ,ujwj-, we introduce the Floquet
eigenvectors p;(z) = P(r)v; and q; (7) = WJT-P"(T). As
we show along the next sections, knowledge of these
vectors is enough to derive the linearized quantum proper-
ties of the system. To this aim, it is also convenient to point
out that they satisfy the initial value problems

p;(v) = [L() —plp;(e).  p;(0)=v; (7a)
a0 =q;(@l - L)) q;(0)=w]. (Tb)

and the orthogonality conditions qj’ (7)pi(7) = 6V, as is
easily proven from their definition.

Let us now comment on the general properties of this
eigensystem, which we prove in detail in Ref. [54]. There
always exists a null eigenvalue, say p, = 0, with related
(right) Floquet eigenvector pg(z). This property is a by-
product of the spontaneous temporal symmetry breaking
generated by the limit cycle (Goldstone theorem).
In the single-mode case, there is just another eigenvalue,
which is given by pu; = [ detr{L(7)}/T, and has asso-
ciated (left) Floquet eigenvector q; (z) = (=id,p,i0,p*)" x
exp{ [¢ de'tu{L(7)} — py7}. This vector is the temporal
counterpart of the linear or angular momentum found in
previous works that deal with spatial symmetries [14].

Note that po(z) and q;(z) are, respectively, the tangent
and normal vectors of the limit cycle’s trajectory, see
Fig. 1(a). We haven’t found explicit expressions of the
other Floquet eigenvectors in terms of f(z), but they can
always be found numerically in an efficient fashion, as we
do for Fig. 1(a).

Diffusion of the temporal pattern.—As a first physical
consequence of the properties above, we now show that 0 is
diffusing due to quantum noise, and hence quantum
fluctuations smear off the classical periodic orbit.

In order to show this, we just need to apply qg(r) on
Eq. (4), obtaining d/dr(qib + 0) = /7q}(7)n(z). Note
that by taking 0 as a variable in Eq. (3) we introduced a
redundancy in the number of variables, which is now
consistently removed by setting ng = 0 (in other words,
introducing 6 simply allowed us to track and give physical
meaning to this part of the quantum fluctuations). The
previous equation turns then into a diffusion equation for 6,
leading to a variance

([0(z) — 0(0)]*) = y[)r deq(IN (@) qi(7).  (8)
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Note that the kernel is periodic, and therefore, the coarse-
grained dynamics of € corresponds to a diffusion process,
with a variance increasing linearly with time, making 6
fully undetermined asymptotically as shown in Fig. 1(c).

Steady state as a mixture of Gaussians.—The above
considerations imply that the steady state is formed by a
balanced mixture of Gaussian states, one for each value of
0. As we prove below, the Wigner functions of these
Gaussian states [56] are given by

—r—d(z+0)]" V! (z+0)[r-d(z+0)]

27/det{V(r + 6)}

where r = (x, p)T is the coordinate vector in phase space,
and the mean vector and covariance matrix are given by

d(z) =U[p(z).B* ()" / 7.

V(z) =1 + C(r)p,(z)p{ (DU

e

W(r.z +0) = 9)

(10a)
(10b)

U = (') is the matrix that connects the complex repre-

sentation of the bosonic mode to its real representation in
phase space, and

Cr)=1lim | ade gl )N(D)qi (@), (1)
= Jo
is a T-periodic function.

Let us now prove the expressions above. First, we
introduce the quadrature vector R =U(p,p)"/ /7.
Within the positive P representation the elements of
the long-time mean vector d and covariance matrix V are
found as d,,(7)=lim, (R, (7)) and V,,(7) =3, +
lim,_, o (6R,,(7)6R, (7)), where S6R,, =R, — (R,) [56].
Next, note that the condition q/(z)b(z) = 0 allows us to
write the quantum fluctuations as b(z) = ¢, (z)p;(r), where
we define the projection ¢;(z) = q](z)b(z). Using the
expansion (3), we can then write the quadrature vector as
VIR(T) =U[B(7), pT(7)]" + ¢ (z)Up, (), whose stochas-
tic properties are all then concentrated on ¢ (7). On the
other hand, applying qJ[ (7) on Eq. (4) we find ¢; =y c; +
V74;(7)n(z), whose solution leads to the moments
lim,_{c;(r)) =0 and lim,_(c}(z)) = yC(z), which
provide the mean vector and covariance matrix in Eq. (10).

The steady state associated with the expansion (3) of the
stochastic variables is then given by the balanced mixture

W(r)=ATd—T9W(r;r+6):/OT?W(r;9). (12)

In Fig. 2 we compare the Wigner function (12) with the one
obtained by exact simulation [57] of the master equa-
tion (1). We find very good agreement even for relatively
large y, where quantum fluctuations are still quite relevant,
as can be appreciated.
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FIG. 2. Steady-state Wigner functions of the driven VdP
oscillator, Eq. (1), for A = V0.4, F = /0.1, and two values
of 7, 0.1 and 0.01. In (a) and (b) we show the exact solutions, to
be compared with the mixture of Gaussians (c),(d) obtained
through linearization, see Eq. (12). In (e) and (f) we show a few of
these Gaussian states at selected points of the trajectory, in order
to see how these change along the limit cycle. Note how, as
shown explicitly in (e), all the Gaussians carry vacuum fluctua-
tions along the direction defined by the q,(z) Floquet eigenvector
(black arrows), with varying fluctuations along the p,(z) direc-
tion (gray arrows).

This Wigner function has a very suggestive interpreta-
tion, see Fig. 2. First, Eq. (10a) tells us that the Gaussian
states are centered along the points of the limit cycle’s
trajectory, as expected. As for quantum fluctuations, note
that the eigenvalues of the covariance matrix V(6) are 1 and
det{V(0)}, which inform us about the variance along the
principal axes of the uncertainty ellipse. It is easy to check
that the directions of these principal axes follow the vectors
Uqy(0) and Up, () for the 1 and det{V(0)} eigenvalues,
respectively (see Fig. 2). Hence, the quadrature of the
Gaussian state that goes in the direction of qq(0)
(Goldstone mode) carries vacuum fluctuations, which
one can trace back to the condition qj(8)b(d) =0 that
the method naturally demands. On the other hand, since in
principle all physical covariance matrices satisfy det{V} > 1
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(uncertainty principle) [56], this seems to suggest that the
quadrature going in the direction of p, () carries fluctuations
above the shot noise limit. While this is indeed the case for
the VdP oscillator studied here, our experience with other
nonlinear systems [14] tells us that we could find
det{V(0)} < 1 (squeezing below shot noise) without violat-
ing the uncertainty principle. This is because the two
quadratures of each Gaussian state are not conjugate vari-
ables, but they are both conjugate to the diffusing variable 6
[14], which is completely undetermined in the steady state.

Conclusions.—In this Letter we have introduced a
linearization method capable of dealing with quantum
nonlinear systems in the regime where they show sponta-
neous limit-cycle formation. The technique keeps the
simplicity of standard linearization around stationary sol-
utions. It requires finding the fundamental matrix of the
Floquet method over a period of the cycle by solving a
linear initial value problem with time-periodic coefficients.
Only two equations are added with each mode that is
introduced in the problem, giving the method a linear
scaling with the size of the system that makes it suitable
for complex driven-dissipative many-body problems such as
optomechanical arrays [45—49]. Moreover, the linearity of
the equations should give efficient access also to dynamical
objects such as multitime correlation functions, which are
sensitive to the diffusion of € in general, and are of crucial
relevance for experiments [3,4,6,52] and the emergent field
of quantum synchronization [40-42,58—63].
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