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We present a determination of the pion charge radius from high precision data on the pion vector form
factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity.
At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high
accuracy from Roy equations for ππ elastic scattering via the Fermi-Watson theorem. We use also the
values of the modulus at several higher timelike energies, where the data from eþe− annihilation and τ
decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The
experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on
a specific parametrization, are optimal for the given input information and do not depend on the unknown
phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion
is rπ ¼ ð0.657� 0.003Þ fm, which amounts to an increase in precision by a factor of about 2.7 compared to
the Particle Data Group average.
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Introduction.—The electromagnetic charge radius of the
pion is a fundamental observable of the strong interactions,
with a long history dating from over half a century. As with
similar observables like the proton radius or the pion-nucleon
σ term, its accurate determination is crucial for precision tests
of the standard model at low energy, especially of chiral
perturbation theory (CHPT) and lattice QCD.
In a relativistic theory, the mean charge radius squared is

related to the slope at t ¼ 0 of the pion electromagnetic
form factor FðtÞ, according to the expansion FðtÞ ¼
1þ ð1=6Þhr2πitþOðt2Þ. The most recent value of the pion
charge radius, rπ ≡ hr2πi1=2, quoted by the Particle Data
Group (PDG) [1],

rπ ¼ ð0.672� 0.008Þ fm; ð1Þ
is obtained mainly from values of the form factor measured
at small spacelike momenta t < 0 from eπ → eπ and
eN → eπN processes, extrapolated to t ¼ 0 using simple
dipolelike parametrizations. CHPT at two-loop order [2] in
the timelike region, t > 0, yields the best value hr2πi ¼
ð0.437� 0.016Þ fm2, i.e., rπ ¼ ð0.661� 0.015Þ fm. The
calculations in lattice QCD, summarized in [3], are con-
sistent with these values, but have not yet reached the same
precision.
There is a large amount of information on the pion form

factor that is not used in the radius extractions quoted
above. For t > 4m2

π, where FðtÞ is a complex function, its
modulus is measured either from eþe− → πþπ− annihila-
tion or, using isospin symmetry, from the τ− → π−π0ντ
decay. This input involves however energies more distant
from t ¼ 0, so its use for the radius extraction requires a

nontrivial analytic continuation. The properties of the form
factor that follow from causality and unitarity play here an
important role. It is known that FðtÞ is analytic in the
complex t plane with a unitarity cut along the region
(4m2

π , ∞) of the real axis, and its phase below the first
inelastic threshold, in the limit of exact isospin symmetry, is
equal by the Fermi-Watson theorem [4,5] to the P-wave
phase shift of ππ elastic scattering. Many analyses that
exploit these properties have been performed over several
decades, the pion form factor being actually one of the
observables most investigated in dispersion theory.
However, the standard dispersive relations, written only in
terms of the phase (the so-called Omnès representation), or
the modulus, or the imaginary part, always require some
poorly known or unavailable input. Therefore, although in
some papers (for instance Refs. [6,7]) the reported uncer-
tainty is quite small, a certain model dependence is unavoid-
able in the standard dispersive calculations of the pion radius.
In this work we apply an alternative mathematical

formalism, proposed in [8] (see also [9]), which exploits
in an optimal way analyticity, unitarity, and the information
available on the form factor. Essentially, the formalism is a
mixed phase-modulus dispersive representation, which
uses as input at low energies the phase, very precisely
known from ππ scattering, and at higher energies the
modulus, measured by high precision experiments.
Using techniques of optimization theory for analytic
functions, with no specific parametrization, we obtain
for each input upper and lower bounds on the charge
radius. The statistical distribution of the experimental input
was then accounted for by Monte Carlo simulations, to
convert the bounds into allowed intervals with definite
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confidence levels. This work considerably improves our
previous study Ref. [10], by properly treating the exper-
imental errors and by including more experimental data.
Similar techniques have been applied recently in Ref. [11]
for evaluating the low-energy hadronic contribution to
muon g − 2.
Theoretical and experimental inputs.—As shown in [12],

the first significant inelastic threshold for the pion vector
form factor is produced by the ωπ channel at

ffiffiffiffiffi
tin

p ¼
mω þmπ ¼ 0.917 GeV. Below tin we take the phase of the
form factor as the P-wave phase shift of ππ elastic
scattering, which has been calculated very accurately from
Roy equations and CHPT. We use the phase shift calculated
in [13,14] and the so-called constrained fit to data from
[15], which we refer to as Bern and Madrid phases,
respectively.
Above the inelastic threshold, where the Fermi-Watson

theorem is no longer valid and the phase of the form factor is
not known, we make use of the measurements of the
modulus. In our conservative approach, we do not require
the pointwise knowledge of jFðtÞj, but adopt a weaker
condition, expressed by a weighted integral of jFðtÞj2.
Several weighted integrals have been investigated in the
previouswork [10], and stability of the results was proved for
a large class of weights. Here we adopted the specific
condition

1

π

Z
∞

tin

dt
t
jFðtÞj2 ≤ I; ð2Þ

for which the available information allows an accurate
and conservative estimate of the upper bound I.We evaluated
the integral using the BABAR data [16] on the modulus
jFðtÞj from tin up to

ffiffi
t

p ¼ 3 GeV, smoothly continued
with a constant value for the modulus in the range
3 GeV ≤

ffiffi
t

p
≤ 20 GeV, and a 1=t decreasing modulus at

higher energies, as predicted by QCD scaling [17,18]. This
led to the value I ¼ 0.578� 0.022, where the uncertainty is
due to the BABAR experimental errors. The contribution of
the range above 3 GeV to the integral is actually of only 1%.
As discussed in previous works [10,11], the assumed
behavior of the modulus above 3 GeV largely overestimates
perturbative QCD calculations [19], so the quoted value of I
is a conservative upper bound of the integral (2). This leads to
weaker bounds on the charge radius, due to an exact
monotony property of these bounds with respect to the value
of I [9,10], which makes our predictions conservative. For
the same reason, in the numerical analysis we have used as
input for I the quoted central value increased by the error.
The measurements of the modulus of FðtÞ below the

inelastic threshold are expected to further improve the
precision. This input is useful only if one can identify an
energy range, sufficiently close to the point t ¼ 0 in order
to play a role in the radius extraction, and where accurate
measurements are available. Unfortunately, at very low

energies the data have still large errors and there are
discrepancies between the experiments. As shown in
[10,11], the above requirements are satisfied by the range
ð0.65 − 0.71Þ GeV. The number of experimental points in
this range varies from experiment to experiment. For the
eþe−-annihilation experiments, there are two points each
from CMD2 [20] and SND [21], 26 points for BABAR
[16,22], eight points each for KLOE 2011 [23] and KLOE
2013 [24], and ten points for BESIII [25]. For the τ-decay
experiments, there are three points each for CLEO [26],
ALEPH [27,28], and OPAL [29], and two points for Belle
[30]. We note that, compared to Ref. [10], we include now
in addition the very recent data of BESIII [25], the
alternative KLOE analysis [23], and the τ-decay data from
[26–30]. Several corrections, discussed in detail in
Appendix B of Ref. [11], have been applied to the data
in order to obtain the proper values of jFðtÞj in the isospin
limit, required in the formalism.
As we mentioned, there is also rich experimental

information on the pion form factor in the spacelike region,
t < 0. In our analysis we used only the values of the
form factor measured recently with high precision by
Jefferson Lab Fπ Collaboration [31] at larger spacelike
energies, Fð−1.60 GeV2Þ ¼ 0.243� 0.012þ0.019

−0.008 and
Fð−2.45 GeV2Þ ¼ 0.167� 0.010þ0.013

−0.007 . It is important to
emphasize that our phenomenological input is complemen-
tary to that used in the determinations quoted by PDG.
Finally, the conditionFð0Þ ¼ 1 imposed bygauge invariance
is implemented in an exact way.
Calculation of hr2πi and its uncertainty.—We assume first

that only one spacelike value FðtaÞ at a point ta < 0 and
one value of the modulus jFðtbÞj at a point tb in the
specified range of the elastic region (4m2

π , tin) are known.
From the input described above, it is possible to derive an
exact range for the first derivative of FðtÞ at t ¼ 0, equal by
definition to hr2πi=6. We do not give the proof, which can be
found in [8,9], but simply quote the result. In order to
proceed, we must introduce some notation. First make a
change of variable from t to z ¼ ~zðtÞ, where

~zðtÞ ¼
ffiffiffiffiffi
tin

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
ffiffiffiffiffi
tin

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p ; ð3Þ

and define a new function gðzÞ by

gðzÞ ¼ F½~tðzÞ�fO½~tðzÞ�g−1wðzÞωðzÞ: ð4Þ

Here ~tðzÞ is the inverse function of ~zðtÞ, OðtÞ is the Omnès
function

OðtÞ ¼ exp

�
t
π

Z
∞

4m2
π

dt0
δðt0Þ

t0ðt0 − tÞ
�
; ð5Þ

where δðtÞ is equal to the ππ P-wave phase shift δ11ðtÞ for
t ≤ tin and is an arbitrary smooth (Lipschitz continuous)
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function above tin, and wðzÞ and ωðzÞ are two auxiliary
functions, defined as

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − z
1þ z

r
; ð6Þ

ωðzÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − ~tðzÞ

p
π

Z
∞

tin

ln jOðt0Þjdt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
½t0 − ~tðzÞ�

�
: ð7Þ

Then one can prove the following exact inequality,
expressed as positivity of the determinant,

det

���������

I − gð0Þ2 − g0ð0Þ2 ḡðzaÞ ḡðzbÞ
ḡðzaÞ z4a

1−z2a
ðzazbÞ2
1−zazb

ḡðzbÞ ðzazbÞ2
1−zazb

ðzbÞ4
1−z2b

���������
≥ 0; ð8Þ

where za¼ ~zðtaÞ, zb¼ ~zðtbÞ, and ḡðzÞ¼gðzÞ−gð0Þ−g0ð0Þz.
As shown in [9], the dependence of the Omnès function

OðtÞ on the arbitrary phase δðtÞ above tin is exactly
compensated in the product (4) by the corresponding
dependence of ωðzÞ. Therefore, except hr2πi, all the quan-
tities entering the determinant (8) are calculable and depend
only on the given input. From (4) it follows that hr2πi enters
only the expression of the derivative g0ð0Þ, which can be
written as g0ð0Þ ¼ ξþ ηhr2πi, where ξ and η are real
numbers. This implies that the determinant is a quadratic
concave expression of hr2πi and the positivity condition (8)
can be written as

Ahr2πi2 þ 2Bhr2πi þ C ≥ 0; A ≤ 0: ð9Þ

This inequality leads to a definite allowed range for hr2πi if
B2 − AC ≥ 0 and has no solution if B2 − AC < 0. The
latter case occurs when the phenomenological input
adopted is inconsistent with analyticity.
The inequality (8) involves only one spacelike value

FðtaÞ and one timelike modulus jFðtbÞj, which have been
assumed to be known. The optimization formalism applied
here allows actually the simultaneous inclusion of several
spacelike and timelike points. The general case, treated in
[9], is expressed by a more general determinant, but leads to
a condition of the same form (9) for the charge radius.
However, the simultaneous inclusion of many points leads
to a system overconstrained by analyticity, which is
difficult to handle numerically. Therefore, the most suitable
approach for phenomenological applications is that adopted
here, in which only one spacelike and one timelike
constraint are imposed at the same time, the results from
different inputs being subsequently combined by a suitable
averaging procedure.
From the inequality (9), an allowed range for hr2πi can be

obtained for every set of inputs. However, except the
condition Fð0Þ ¼ 1, which is exact, the input quantities

are known only with some errors. One of the key aspects of
our calculation is a proper statistical treatment of these
errors. This is achieved by randomly sampling each of the
inputs with specific distributions: the phase of FðtÞ, which
is the result of a theoretical calculation, is assumed to be
uniformly distributed, while for the spacelike and the
timelike data, which are known from experimental mea-
surements, we adopt a Gaussian distribution with the
measured central value as mean and the quoted error
(the biggest error for spacelike data where the errors are
asymmetric) as standard deviation.
For each set of values of the input statistical sample, if

they are compatible, we calculate upper and lower values
on hr2πi from (9). Since all the values between these extreme
points are equally allowed, we uniformly generate values of
hr2πi in between the bounds. For convenience, the minimal
separation between the generated points was set at
10−3 fm2 and for intervals smaller than this limit no
intermediate points were created. In this way, for each
input from a spacelike energy and one timelike point in the
region (0.65–0.71) GeV, we obtain a large sample of values
of hr2πi. The results were proved to be stable against the
variation of the size of the random sample and the minimal
separation mentioned above.
In Fig. 1 we show for illustration two distributions of

hr2πi, obtained using the Bern phase and one timelike
modulus taken from the BABAR experiment [16].
Similar results have been obtained with the Madrid phase
and other data on modulus. The left panel shows the
distribution obtained without the inclusion of a spacelike
datum [this case is obtained from Eq. (8) by removing the
second row and column of the determinant]. The histogram
is rather flat and far from a normal distribution, which
means that the input does not allow the extraction of a
precise value of hr2πi and its error. Adding the input from
the spacelike point t ¼ −1.60 GeV2, we have obtained the
distribution in the right panel, shown actually to be very
close to a Gaussian. The explanation is that, adding the
spacelike information, the input is much more constrained

0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46
0

500

1000

1500

2000

2500

r2 fm2

D
is

tr
ib

ut
io

n

0.41 0.42 0.43 0.44 0.45 0.46
0

500

1000

1500

2000

2500

r2 fm2

D
is

tr
ib

ut
io

n

FIG. 1. Statistical distributions of hr2πi obtained using the Bern
phase and one modulus measured by the BABAR experiment [16].
The left panel is obtained without spacelike input, the right one
with input from t ¼ −1.60 GeV2. The vertical lines correspond
to 68.3% confidence limit (C.L.)
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and many points in the Monte Carlo generated input do not
satisfy the compatibility condition discussed below Eq. (9).
The consistent values of the input lead to a normal
distribution, which allows the extraction of the mean value
and the standard deviation for the parameter hr2πi.
In Fig. 2we show the 68.3%C.L. intervals obtained in this

way, for all the input data on modulus in the chosen range
(0.65–0.71)GeV, for all experiments. TheBern phase and the
spacelike input at t ¼ −1.60 GeV2 have been used in this
figure. Similar results are obtained with the Madrid phase,
and also using the spacelike datum at t ¼ −2.45 GeV2.
We take then the average of the results obtained with

input from various measurements. Since the degrees of
correlations between the measurements at different energies
are expected to vary from one experiment to another, we
perform first the average of the values obtained with input
from each experiment. The correlations are actually not
known; therefore, we apply the prescription proposed in
[32] and adopted by PDG [1], where the effective corre-
lation is determined from data themselves. Denoting by vi
and σi the central values and the standard deviations
obtained from n measurements, we define a generic
covariance matrix CðfÞ by ½CðfÞ�ii ¼ σ2i and ½CðfÞ�ij ¼
fσiσj for i ≠ j, where f ∈ ð0; 1Þ is an unknown global
correlation. Then the most robust average v̄ is defined as
standard mean of vi weighted with the normalized weights
σ−2i =

P
jσ

−2
j , and the standard deviation σ̄ is given by

σ̄ ¼
�Xn

i;j¼1

½CðfÞ−1�ij
�−1=2

; ð10Þ

where f is the solution of the equation χ2ðfÞ=ðn − 1Þ ¼ 1,
for the standard definition of χ2ðfÞ [32].
We have applied the above prescription to the values

obtained from each eþe−-annihilation and τ-decay experi-
ment, separately for the Bern and the Madrid phase. A
conservative way of treating the information from spacelike
t has been adopted, by taking, for each timelike input, the
simple average of the central values and standard deviations
obtained with each of the two considered data. It turned out
that in all cases the ratio χ2ð0Þ=ðn − 1Þ was less than 1 and

increased for a positive correlation, reaching unity for f in
the range 0.68–0.96.
Results.—In Table I we show the means and standard

deviations obtained with the averaging prescription
described above for the different timelike experiments.
The results are mutually consistent among them, reflecting
the consistency of the input data on modulus in the selected
energy range. The spread of the errors, ranging from the
smallest (BABAR) to the largest (OPAL), is actually not
very large, which can be explained by the common
information that entered the predictions. We can therefore
combine all the results, without the risk of a bias from a
single experiment. Since the correlations between these
values are difficult to estimate, we have applied again the
averaging procedure described above [32], where an
empirical overall correlation is extracted from the data.
The correlation for all the ten values in Table I was found to
be 0.82 and 0.75 for the Bern and the Madrid phase,
respectively, very close in both cases to the value f where σ̄
defined in (10) reached its maximum. For a conservative
estimate of σ̄ we have adopted actually the maximum value
of (10) for f in the range (0,1). This led to the predictions
0.4317� 0.0044 fm2 and 0.4323� 0.0039 fm2 for hr2πi,
for the Bern and the Madrid phase, respectively. Once again
adopting a conservative treatment, we have combined the
two determinations by taking their simple average
hr2πi ¼ ð0.4320� 0.0041Þ fm2, from which we obtained
our final result

rπ ¼ ð0.657� 0.003Þ fm: ð11Þ

The separate predictions obtained from eþe− and τ-decay
data are ð0.657� 0.003Þ and ð0.658� 0.004Þ fm, respec-
tively, showing that (11) is dominated by the more precise
eþe− data.
The central value (11) is lower than the PDG average (1),

a feature that seems to be common to the determinations
based on analyticity [6,7]. We note however that (11) is
consistent with the determinations based only on elastic

 0.42

 0.43

 0.44

 0.45

 0.65
 0.67

 0.69

CMD2 2006

<
r2 >

fm
2

 0.42

 0.43

 0.44

 0.45

 0.65
 0.67

 0.69

SND 2006

<
r2 >

fm
2

t1/2 (GeV)

 0.65
 0.66

 0.67
 0.68

 0.69
 0.7

KLOE 2011

 0.65
 0.66

 0.67
 0.68

 0.69
 0.7

BABAR 2009

t1/2 (GeV)

 0.65
 0.66

 0.67
 0.68

 0.69
 0.7

KLOE 2013

 0.65
 0.66

 0.67
 0.68

 0.69
 0.7

BES 2015

t1/2 (GeV)

 0.42
 0.43
 0.44
 0.45

 0.65
 0.67

 0.69
 0.71

ALEPH 2005

 0.42
 0.43
 0.44
 0.45

 0.65
 0.67

 0.69
 0.71

CLEO 2000

t1/2 (GeV)

 0.42
 0.43
 0.44
 0.45

 0.65
 0.67

 0.69
 0.71

Belle 2008

 0.42
 0.43
 0.44
 0.45

 0.65
 0.67

 0.69
 0.71

OPAL 2012

t1/2 (GeV)

FIG. 2. 68.3% C.L. intervals of hr2πi for each input modulus in
the region (0.65–0.71) GeV measured in eþe−-annihilation and
τ-decay experiments, using the Bern phase and the spacelike
datum at t ¼ −1.60 GeV2.

TABLE I. Central values and standard deviations for the
quantity hr2πi obtained by the averaging prescription described
in the text for each experiment.

Bern phase Madrid phase

CMD2 06 0.4281� 0.0064 0.4279� 0.0061
SND 06 0.4323� 0.0059 0.4327� 0.0055
BABAR 09 0.4343� 0.0048 0.4351� 0.0046
KLOE 11 0.4304� 0.0055 0.4304� 0.0048
KLOE 13 0.4311� 0.0060 0.4313� 0.0054
BESIII 15 0.4293� 0.0063 0.4319� 0.0057
CLEO 00 0.4340� 0.0060 0.4346� 0.0054
ALEPH 05 0.4315� 0.0067 0.4318� 0.0064
Belle 05 0.4347� 0.0056 0.4356� 0.0051
OPAL 12 0.4266� 0.0082 0.4265� 0.0079
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eπ-scattering data, without including the more model-
dependent determinations from electroproduction data at
low spacelike t [1]. If not settled by experimental consid-
erations, this difference is a challenge for precise lattice
calculations, expected in the coming years.
The present work proves the strength of the general

principles of analyticity and unitarity, enforced by suitable
mathematical techniques and supplemented byMonte Carlo
simulations for error assessment. Our prediction (11) is
based on input complementary to that entering the PDG
average (1) and has an uncertainty smaller by a factor of
almost 2.7, making it the most precise model-independent
determination to date.
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