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Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant
of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field.
Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully
calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric
SOð5Þ=SOð4Þ model and comment on its observational consequences.
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Electroweak symmetry breaking (EWSB) is a key
ingredient of the standard model (SM) responsible for
all elementary particle masses. While the discovery of the
Higgs boson [1,2] was a major milestone towards under-
standing the mechanism of EWSB, several important issues
remain unexplained. In analogy with superconductivity the
Higgs potential is assumed to be of the simplest Landau-
Ginzburg type [3]. In the condensed matter systems we
understand that the potential describes the condensation of
emergent collective modes; however, in particle physics we
do not even know if the Higgs boson is elementary or
composite, and what the true Higgs potential is. We would
also like to understand whether the Higgs potential is stable
under large quantum corrections in the ultraviolet and
whether a small or large fine-tuning is needed to maintain
the hierarchy.
The idea that the Higgs boson is a pseudo Nambu-

Goldstone boson (pNGB) [4–6] of spontaneously broken
approximate global symmetry of some strong dynamics
gives intriguing answers to the above mysteries. In this
scenario, the Higgs boson could be a bound state of some
strongly coupled constituents, while the entire Higgs poten-
tial is radiatively generated via loops from the top and gauge
sectors, which will trigger vacuum misalignment and
EWSB. Because of its pNGB nature, the Higgs mass
remains naturally light. The cutoff scale is reduced to the
confinement scale Λ ∼ 4πf (where f is the scale of global
symmetry breaking). The sensitivity of the Higgs potential to
this confinement scale can be further reduced by different
mechanisms [7–11]. However, the parameters of the existing
models have to be tuned to achieve a realistic Higgs potential
and particle spectrum. The origin of this tuning is to ensure
that the EWSB vacuum expectation value (VEV) v is small
compared to the global symmetry beaking scale f, v=f ≪ 1,
to evade electroweak precision [12] and direct detection
bounds for the top partners [13,14].

In this Letter, we propose a novel type of composite
Higgs model that can address the above issues and requires
only the minimal structure of the general low-energy
Goldstone boson (GB) Lagrangian. We present models
with a “maximal symmetry”: a remnant of the chiral
global symmetries of the fermion sector which has wide-
ranging consequences for the properties of the Higgs
potential. This symmetry involves a twisting with the
Higgs VEV, and such symmetry has not been previously
considered. Because of this twist the maximal symmetry
will not contain the original shift symmetry of the GBs;
hence, a nonvanishing Higgs potential will be generated.
However, the symmetry will be powerful enough to render
the contribution of the top sector to the Coleman-Weinberg
Higgs potential [15] automatically finite. Maximal sym-
metry will require the vanishing of one kind of the form
factors Πq;t

1 ðpÞ, and as a consequence imply a specific form
of the Higgs potential, and hence, the tuning of the model
reduces to the minimal universal tuning: a single parameter
ξ ¼ sin2ðv=fÞ must be fine-tuned to obtain a realistic
electroweak symmetry breaking sector. There have been
few truly new concepts for composite Higgs model build-
ing since the introduction of the ideas of collective
symmetry breaking [7,8], partial compositeness, or the
twin Higgs model [9]. Maximal symmetry is such a novel
direction that, as we will demonstrate here, will lead to a
much simpler and predictive model, and it is expected to
have a wide range of applications for many types of
composite Higgs models and related topics.
As usual in composite Higgs models, we will consider a

strongly coupled system which dynamically breaks its
global symmetryG toH, and the Higgs fields are identified
with the pNGBs which lie in the coset space G=H. The
additional assumption we will make is that the coset space
is a “symmetric space” [16], which implies the existence of
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a parity operator V (called Higgs parity) and the auto-
morphism of the form [17]

VTaV† ¼ Ta; VTâV† ¼ −Tâ; ð1Þ
where ðTaÞTâ are the (un)broken generators. Many of the
most commonly used moduli spaces satisfy this require-
ment, including the SOð5Þ=SOð4Þ of the minimal com-
posite Higgs model, which we will study in detail below.
As usual, the pNGB fields hâ can be described by the

Goldstone matrix

U ¼ expðihâTâ=fÞ: ð2Þ

The main consequence of the existence of V is that one
can define a modified pNGB matrix which transforms
linearly under the full set of symmetries G. The original
pNGB matrix U has the nonlinear transformation pro-
perties [18,19] U → gUhðhâ; gÞ†, where g ∈ G and h ∈ H,
and h depends nonlinearly on the pNGB field hâ and the
transformation element g. However, the parity transfor-
med pNGB matrix ~U ¼ VUV† ¼ U† transforms as ~U →
VgV† ~Uh†. We can then define the modified pNGB matrix:

Σ0 ≡ U ~U†V ¼ U2V; ð3Þ

which transforms linearly under the full global sym-
metries Σ0 → gΣ0g†.
The linearly realized global symmetry can be used to

fully fix the structure of the low-energy effective
Lagrangian of the theory. The SM fermions are charged
under the SUð2ÞL ×Uð1ÞY , which is a subgroup of the full
global symmetries G; thus, they can always be embedded
into the full symmetry group G, though this embedding
may break the full global symmetry itself (hence, it is a
spurionic embedding). We will assume that the left-
handed (LH) top doublet qL and right-handed (RH) top
singlet tR are embedded into ΨqL and ΨtR , which are in
some representation of the full global symmetry group G.
Thus imposing the originalG symmetry will completely fix
the most general effective action for the SM fermion fields
coupled to the pseudo Goldstone Higgs bosons:

Leff ¼ Ψ̄qLM
t
1ðpÞΣ0ΨtR þ Ψ̄qL=p ½Πq

0ðpÞ þ Πq
1ðpÞΣ0�ΨqL

þ Ψ̄tR =p½Πt
0ðpÞ þ Πt

1ðpÞΣ0�ΨtR þ H:c: ð4Þ

The form factors Πq;t
0;1 and Mt

1 encode the effect of the
strong dynamics, and for simplicity we have assumed that
ΨqL;tR are in the fundamental of G. Note that since Σ02 ¼ 1,
we only need to expand Eq. (4) to linear order in Σ0. Once
the embeddings of the SM fermions into G are fixed, this
expression can be expanded to find the effective SM
Lagrangian in terms of the form factors.
A careful examination of the symmetries of the effective

Lagrangian Eq. (4) will allow us to identify an enlarged

global symmetry in certain limits, which we will call the
maximal symmetry. This maximal symmetry is the key new
ingredient of composite Higgs models, which will be the
focus of discussions for the rest of this Letter. Let us first
start with the massless limit of Eq. (4) when Mt

1 ¼ 0 and
also assume Πq;t

1 ¼ 0. In this case the global symmetry G is
enlarged to a chiral GL ×GR symmetry acting on the
left- or right-handed fermions ΨqL=ΨtR [20]. Now turning
on the top mass term Ψ̄qLM

t
1ðpÞΣ0ΨtR (while still keeping

Πq;t
1 ¼ 0), we observe that we do not break the enlarged

global symmetry completely, but rather leave a subgroup
GV 0 of GL ×GR unbroken. We call this GV 0 , the maximal
symmetry, which is identified with the subgroup that keeps
the pNGB field invariant, gLΣ0g†R ¼ Σ0. A more convenient
form of the defining relation for maximal symmetry can be
obtained by absorbing the Higgs field into the definition of
the transformation g0L;R¼U†gL;RU, such that g0LVg

0
R
† ¼ V,

forming the maximal symmetry group GV 0 . Shortly we will
see that the origin of this maximal symmetry can be traced
back to a true global symmetry of the heavy composites.
This symmetry will have far-reaching consequences for the
structure of the Higgs potential: it will render the potential
finite, and imply that the model has the minimal universal
amount of tuning. One immediate consequence of maximal
symmetry is that the Higgs potential is directly proportional
to the top mass square, since in the limit when Mt

1 ¼ 0 the
Lagrangian Eq. (4) does not break the global shift sym-
metry explicitly. Thus, if the top mass is collective, then
maximal symmetry will automatically imply that the Higgs
potential from the fermion sector is finite.
Until now, we have simply assumed certain properties

of the low-energy effective action Eq. (4) and found
the important consequences of the emerging maximally
symmetric structure. Next, we would like to explain
the conditions for the actual existence of this symmetry
by examining the simplest realistic example of the
SOð5Þ=SOð4ÞMCHM5 [21]: we will see that the existence
of maximal symmetry will impose a condition on the
spectrum of the composites as well as relations among the
mixing terms between the elementary and the composite
sectors. The explicit form of the Higgs parity operator is
V ¼ diagð1; 1; 1; 1;−1Þ with the properties V ¼ V† and
V2 ¼ 1. The SM fermions are embedded into ΨqL and ΨtR ,
which are in the 5 of SOð5Þ while we assume that the
composite fermions (top partners) ΨQ and ΨS transform as
a 4 (for ΨQ) and 1 (for ΨS) under SOð4Þ, which can be
combined into a full 5 of SOð5Þ [22]. The general fermionic
Lagrangian can then be parametrized as [23]

Lf ¼ Ψ̄Qði∇ −MQÞΨQ þ Ψ̄Sði∇ −MSÞΨS

þ fffiffiffi
2

p Ψ̄tRPLðϵtSUΨS þ ϵtQUΨQÞ

þ fΨ̄qLPRðϵqSUΨS þ ϵqQUΨQÞ þ H:c:; ð5Þ
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where ∇ is a covariant derivative with respect to the SM
gauge fields.
In order to understand the symmetry properties of this

Lagrangian more easily, it is useful to combine ΨQ and ΨS

back to complete representations 5 of the global symmetry
SOð5Þ (and assume for simplicity that CP is conserved):
Ψþ ¼ ðΨQþΨSÞ=

ffiffiffi
2

p
, Ψ− ¼ ðΨQ −ΨSÞ=

ffiffiffi
2

p
. Thus, Ψþ

and Ψ− are related by the Higgs parity operator:
Ψþ ¼ VΨ−, and are not independent fields. Our original
fermion Lagrangian Eq. (5) in terms of Ψ� is

Lf ¼ 2Ψ̄þi∇Ψþ þ fðc−RΨ̄tRUVΨþL þ cþRΨ̄tRUΨþLÞ
− ðMQ þMSÞΨ̄þLΨþR − ðMQ −MSÞΨ̄þLVΨþR

þ fðc−LΨ̄qLUVΨþR þ cþLΨ̄qLUΨþRÞ þ H:c:; ð6Þ
where the Yukawa couplings are c�R ¼ ðϵtQ � ϵtSÞ=2,
c�L ¼ ðϵqQ � ϵqSÞ=

ffiffiffi
2

p
.

This simple form of the Lagrangian allows us to identify
the possible symmetry breaking patterns and the conditions
for the emergence of the maximal symmetry. We have
assumed here that the composite fermionsΨQ andΨS fill out
a full SOð5Þ representation. This does not generically have
to be the case, but it will be a necessary condition on the
spectrum of composites in order to obtain maximal sym-
metry. Once the composites do fill out a complete SOð5Þ
representation, its kinetic term will have the enlarged
SOð5ÞL × SOð5ÞR chiral global flavor symmetry, which
can have various symmetry breaking patterns depending
on the structure of the Yukawa couplings and composite
mass terms. These symmetry breaking patterns will deter-
mine the form of the radiatively induced Higgs potential and
its degree of divergence. If c−L=R and cþL=R were to appear
simultaneously in the Lagrangian, one would not be able to
maintain an entire SOð5Þ global symmetry as needed for
maximal symmetry. This requirement for maximal sym-
metry is equivalent to the assumption that the elementary-
composite mixing terms are fully SOð5Þ invariant. Since our
goal is to find an implementation of the maximal symmetry,
we will set c−L ¼ c−R ¼ 0 in the general Lagrangian. In this
case, the Lagrangian is

Lf ¼ 2Ψ̄þi∇Ψþ þ fcþRΨ̄tRUΨþL þ fcþLΨ̄qLUΨþR

− Ψ̄þL½ðMQ þMSÞ þ ðMQ −MSÞV�ΨþR þ H:c:

ð7Þ
Once we impose c−L;R ¼ 0, the mixing terms will have

the full SOð5ÞL × SOð5ÞR chiral global symmetry, and the
breaking pattern depends on the relation of the mass terms
MQ;S, giving rise to the following possible breaking patterns:

MQ −MS ¼ 0 ⇒ SOð5ÞL × SOð5ÞR=SOð5ÞV;
MQ þMS ¼ 0 ⇒ SOð5ÞL × SOð5ÞR=SOð5ÞV 0 ;

jMQj ≠ jMSj ⇒ SOð5ÞL × SOð5ÞR=SOð4ÞV: ð8Þ

Clearly, the second case MQ þMS ¼ 0 corresponds to the
maximally symmetric scenario. There is still a remaining
global symmetry, the maximal symmetry SOð5ÞV 0, under
which the composite fields ΨþL;R transform as ΨþL →
g0LΨþL, ΨþR → g0RΨþR, with g0LVg

0
R
† ¼ V, shedding light

on the true origin of the maximal symmetry. Maximal
symmetry which, however, does not contain the entire
Goldstone shift symmetry [since the Goldstone shift sym-
metry is a subgroup of SOð5ÞV and not of SOð5ÞV 0 ]; thus, a
nonvanishing Higgs potential will be generated.
We can easily understand the structure of the radiatively

induced Higgs potential by examining the collective sym-
metry breaking properties of the maximally symmetric case
corresponding to MQ þMS ¼ 0 in Eq. (7). The Goldstone
shift symmetry corresponds to the broken generators of the
original global symmetry G. Every time we have a particular
set of terms turned on in the Lagrangian, we need to check
whether the global symmetries that are not explicitly broken
by turning on these new terms do contain the broken gen-
erators of the original global symmetry. For example, when
cþL, cþR and the twisted mass termMQ −MS are turned on,
the unbroken symmetry is the maximal symmetry SOð5ÞV 0,
which does not coincide with the original global symmetry
SOð5ÞV . Thus, the shift symmetry in this case is explicitly
broken, and one expects a corresponding term generated in
the potential. However, if we turn off one of the c’s (for
example, cþL), then the situation changes. In this case, we
can define a global symmetry transformation under which
ΨþL → g0LΨþL, and identify this with the original SOð5Þ
global symmetry which contains the Higgs shift symmetry
hâ → hâþαâ [g0L ¼ expðiαâTâÞ] so that fcþRΨ̄tRUΨþL is
invariant. SinceΨþR does not couple toU, we can just do an
additional rotation on ΨþR → Vg0LΨþR to keep the twisted
mass term invariant, which keeps the whole Lagrangian
invariant. Thus, we need all three terms to be simultaneously
turnedon,making this a “triply collective”breaking. In fact, to
be able to actually generate a potential all three breaking terms
have to showup twice, giving rise to a finite contributionof the
form jcþLj2jcþRj2f4ðMQ −MSÞ2=Λ2. The maximal sym-
metry automatically implies a highly collective symmetry
breaking pattern, ensuring the finiteness of the generated
Higgs potential.
We close this discussion by summarizing the conditions

for the presence of maximal symmetry in the following: the
elementary-composite mixing must respect the full SOð5Þ
symmetry, while the only source for the composite masses
should be twisted by the Higgs parity.
Integrating out the heavy top partner Ψþ from the

Lagrangian in Eq. (6), we obtain the form factors Πq;t
0 ,

Πq;t
1 , andMt

1 for the effective Lagrangian of the elementary
quarks as in Eq. (4). As expected, maximal symmetry
will automatically enforce Πq;t

1 ¼ 0, while the expression
for the top mass in this case simplifies to mt ¼
cþLcþRðMQ−MSÞf2ðsin2hhi=fÞ=ð2MTMT1

Þ, where MT ,
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MT1
are the top partner masses. We can see that the

contribution to the Higgs potential is proportional to
the top mass square V ∼ ðMt

1Σ0Þ2 ∼ jcþLj2jcþRj2f4ðMQ−
MSÞ2ðsin 2hhi=fÞ2=Λ2, which is finite and has the form as
expected from the general symmetry arguments.
Next, we consider the tuning in models with maximal

symmetry. We parametrize the potential as usual as

VðhÞ ¼ −γs2h þ βs4h; ð9Þ

with the minimum at ξ≡ s2h ¼ γ=2β. In generic composite
Higgs models the fermionic (f) contribution to γf always
dominates over that to βf due to the presence of a nonzero
Πq;t

1 form factor. The reason behind this can be seen by
counting the powers of couplings appearing in the form
factors yielding Πq=t

1 ∼ jϵL=Rj2=g2f, Mt
1 ∼ ϵLϵRf=gf, where

the characteristic top partner mass is Mf ¼ gff, and
ϵ ∼ ϵL=R is a characteristic Yukawa coupling. As a result,
the contributions to γf ¼ ½2Nc=ð4πÞ2�

R
dp4ðΠq

1 − Πt
1þ

jMt
1j2=p2Þ are Oðϵ2=g2fÞ while βf are Oðϵ4=g4fÞ. This

statement holds for both UV divergent and finite contri-
butions, and leads to the so-called double tuning of the
Higgs potential: the tuning needed to obtain a realistic
electroweak symmetry breaking sector is Δ≃ g2f=ξϵ

2 [24],
a factor of g2f=ϵ

2 larger than the irreducible 1=ξ minimal
tuning. Double tuning is a generic problem even for
holographic composite Higgs models [25] based on a
warped extra dimension and their deconstructed versions
[26–29]: these models do regulate the UV behavior of Πq=t

1

to yield a log divergent or finite Higgs potential; however,
double tuning is present. Maximal symmetry offers an
elegant and completely novel solution for eliminating
double tuning: maximal symmetry implies the vanishing
of the entire Πq;t

1 form factor, thereby eliminating all
Oðϵ2=g2fÞ contributions to the Higgs potential. As a result,
both γf, βf ¼ Oðϵ4=g4fÞ, yielding a potential with βf ¼ γf
and a minimum at ξ≃ 0.5, implying that the tuning will be
Δ≃ 1=2ξ, which is the minimal universal tuning necessary
for a small ξ. In order to actually achieve this tuning and
reduce ξ to experimentally allowed values, one needs to
include gauge contributions and impose a cancellation
between the fermionic and gauge contributions of the γ
terms γf ≃ −γg [while βg is at order Oðg4=g4ρÞ, which is
always negligible compared to βf].
Another simple way to see that maximal symmetry

implies minimal tuning is to realize that maximal symmetry
will imply the existence of an additional Z2 symmetry in
the Higgs potential corresponding to the sh ⇔ −ch
exchange, analogous to the case of twin Higgs models
[30]. This symmetry will forbid the ϵ2s2h term (similar to
composite twin Higgs models [31–33]) and eliminate the
double tuning.

For general composite Higgs models one usually needs
some additional tuning to get the Higgs mass down to
125 GeV. However, the model with maximal symmetry
has the special property that the top mass is maximized:
mt ∼ sin θL sin θR jMQ −MSjsh, where θL and θR are the
degrees of LH and RH top compositeness. Since maximal
symmetry implies MQ ¼ −MS, the jMQ −MSj factor is
maximized; hence, the degree of compositeness can be
minimized while the top mass is held fixed at the physical
value. This also implies that the mass of the lightest top
partner minfMT;MT1

g ¼ minfMS= cos θL;MQ= cos θRg is
also automatically reduced, which in turn cuts off the top
contribution to the Higgs mass earlier, mH ∝ minfMT;
MT1

gmt=f, and allows us to obtain a light 125 GeV Higgs
mass in the maximally symmetric limit.
To explicitly verify our estimates, we have numerically

evaluated the tuning in the model of Eq. (7) with maximal
symmetry where we have used the measure of tuning from
Ref. [24]. To obtain the contribution of the gauge sector one
can extend the concept of maximal symmetry by imposing
that the vector meson ρμ and the axial-vector meson aμ
form a full adjoint representation of SOð5Þ (which again
automatically renders the Higgs potential finite). The
analytic expression for the maximal amount of tuning is
Δm ≃ 1=ξ − 2. The numerical values of the tuning are
shown in Fig. 1. We can clearly see that the largest tuning is
from mρ, which is from the requirement γf ≃ −γg and is
slightly smaller than 8 for ξ ¼ 0.1 because corrections
beyond those at Oðc2þLc

2
þR=g

4
fÞ can also contribute to βf,

making it slightly smaller than γf. We also show scatter
plots of the Higgs and top partner masses in Fig. 2 for the
maximally symmetric MCHM.
The main consequence of maximal symmetry is the

vanishing of the form factors Πq;t
1 ¼ 0, which is what one

would like to check experimentally by testing the properties
of the top Yukawa coupling. For the MCHM the top
Yukawa coupling is parametrized by

LY ∼Mt
1 sin

2h
f

�
1þ ðαqΠq

1 þ αtΠt
1Þsin2

h
2f

�
t̄t: ð10Þ
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FIG. 1. Left: Scatter plot of tuning Δi for the various input
parameters xi, cþR (black), cþL (blue), f (red), MS (green), and
mρ (magenta), as a function ofmh with ξ ¼ 0.1 held fixed. Right:
The tuning Δm as a function of ξ for Higgs mass mh ¼ 125 GeV.
The red solid line is the analytic expression of Δm.
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A test of maximal symmetry would be to precisely measure
the various tt̄hn couplings at future colliders and establish
whether it can arise from a single trigonometric function or
not. On the other hand, the ggh coupling from the top and
top partner loops never gets corrected from Πq;t

1 , so its ratio
over the SM value would be the same as the tt̄h coupling in
the maximally symmetric limit [37]. Another way to test
maximal symmetry is via the properties of the additional
resonances if they are within the reach of the LHC (or
future colliders). One can then derive sum rules for the
conditions of the cancellation of the quadratic and log
divergences in the Higgs potential, similar to those in little
Higgs models [38]. For example, for the case of the top
partners, we obtain the sum rules [39] Tr½YmMD� ¼
Tr½YmM3

D� ¼ 0þOðv2=M2
fÞ, where Ym is the Yukawa

coupling matrix of the top partners and the top quark
while MD is their mass matrix. Measuring the masses and
couplings of all charge 2=3 top partner resonances, one can
test these sum rules and thereby maximal symmetry,
following the methods of Ref. [38].
In this Letter, we introduced the new concept of maximal

symmetry. This symmetry is a leftover from the chiral
symmetries of the fermion sector of composite Higgs
models, involving a twisting by the nonlinear Higgs field.
Maximal symmetry has powerful consequences: it renders
the contributions to the Higgs potential finite, and also
ensures that the tuning is minimal. We have presented a
realistic model with maximal symmetry, evaluated its
spectrum and the tuning, and commented on possible
avenues to test the presence of the maximal symmetry
experimentally. This novel symmetry breaking pattern has
many other potential applications. For example, one can
use it to build composite twin Higgs models with an
unbroken Z2 and no tuning of the Higgs potential at all
[40], one can recast the UV Higgs parity operator to be an
adjoint VEV providing a UV completion in terms of a
“twisted moose” model [41], we can try to apply the
maximal symmetry to the gauge sector to explain the vector
meson spectra, or one can use maximal symmetry to obtain
improved natural inflation models [42,43]. We expect these

many possible applications to trigger interest for more
explorations of the structure, formalism, and phenomenol-
ogy of maximal symmetry.
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