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A quantum theory ofmultiphase estimation is crucial for quantum-enhanced sensing and imaging andmay
link quantummetrology tomore complex quantum computation and communication protocols. In this Letter,
we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the
fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements
acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher
information matrix. We apply our theory to the specific example of interferometric phase estimation using
photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and
methods relevant to the future theoretical and experimental development of multiparameter estimation.
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Introduction.—Quantum metrology is currently attract-
ing considerable interest in light of its technological
applications. Theoretical developments and experimental
investigations have, so far, mostly focused on the estima-
tion of a single phase [1–3]. Several proof-of-principle
experiments have demonstrated phase estimation below the
classical (shot-noise) limit [2], including applications in
magnetometry [4], atomic clocks [5], and optical detection
of gravitational waves [6]. Theoretical studies have focused
on understanding the connection between enhancement in
phase estimation and particle entanglement [7–9], as well
as the impact of noise and dissipation on the fundamental
bounds [10,11].
Yet, a significant class of problems cannot be efficiently

cast as the estimation of a single parameter, as for quantum
sensing and imaging [12] and for quantum communication
and computation protocols [13,14]. Such multiparameter
cases have been the subject of recent efforts, investigating
the role of entanglement [15–19], and the impact of noise
and decoherence [20]. Explicit examples have been con-
sidered, including measurement strategies for state estima-
tion [21,22], the joint estimation of phase and loss rate
[23,24], phase and phase diffusion [25–28], components of
a displacement in phase space [29,30], multiple phases
[15,18,31–34], unitary processes [35], parameters belong-
ing to multidimensional fields [36], and estimation tasks
with partial knowledge on the measurement device [37].
One of the most urgent questions in multiparameter

estimation is to find saturable lower bounds of phase
sensitivity. There exists a fundamental bound—the quan-
tum Cramér-Rao bound (QCRB)—that has been formu-
lated in Ref. [38] for the multiparameter case. However,
while in the single-parameter case the QCRB is always

saturable and recipes for finding the optimal measurement
are known [39,40], this is not the case in the multiparameter
scenario [38,41,42]. This strongly limits the possible
applications of the bound.
In this Letter, we discuss the general properties that a

projective measurement must have in order to saturate the
QCRB for multiphase estimation with probe pure states.
Our results extend and complement previous works
[31,38,42] by identifying the necessary and sufficient
conditions on the projectors and constructing optimal
measurements. They apply also when the generators of
phase-encoding transformations do not commute. The
restriction to the ideal case of pure states may provide a
guideline for experiments implementing close-to-pure states
with high fidelity as, for instance, multiarm interferometry
with single photons in each input port [43,44]. Furthermore,
projective measurements are known to be optimal in the
single-parameter case [39], and previous studies have found
examples of measurements saturating the QCRB within this
class [15,31]. In particular, our results apply to the detection
of the number of particles at the output ports of an
interferometer, which realizes in the ideal lossless scenario
a projective measurement. Overall, our findings provide an
effective guideline to design and optimize an experimental
apparatus aiming at multiparameter estimation. This has
implications for future quantum technology developments
with photons, atoms, and trapped ions.
Multiphase estimation.—We consider the simultaneous

estimation of a d-dimensional vector parameter θ ¼
fθ1; θ2;…; θdg using separable measurements and follow-
ing four steps (see Fig. 1). (i) A probe pure state jψi is
prepared. (ii) It is shifted in phase by applying a phase-
encoding unitary transformation ÛðθÞ. (iii) The output state
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jψθi≡ ÛðθÞjψi is detected. In the following, we consider a
set of projective measurements fΠ̂kg, labeled by the index
k representing the possible result. Eventually, the protocol
is repeated ν times using independent and identical copies
of the output state (with the same transformation and output
measurement). (iv) Finally, from the output results
k ¼ fk1;…; kνg, one infers the vector parameter via an
estimator ΘðkÞ. The probability of observing the sequence
k, conditioned to the vector parameter θ, is given by
PðkjθÞ ¼ Q

ν
i¼1 PðkijθÞ and PðkjθÞ ¼ hψθjΠ̂kjψθi. In the

following, we consider locally unbiased estimators, for
which the average value of the estimator equals the true
value of the parameter: Θ̄ðkÞ ¼ P

kPðkjθÞΘðkÞ ¼ θ and
dΘ̄ðkÞ=dθl ¼ 1 (l ¼ 1;…; d). A figure of merit of the
phase sensitivity is the covariance matrix,

½BðθÞ�l;m ¼
X

k

PðkjθÞ½ΘðkÞ − θ�l½ΘðkÞ − θ�m: ð1Þ

The diagonal elements Bl;l equal the variance ðΔθlÞ2. For
any unbiased estimators and independent measurements,
the chain of inequalities

BðθÞ ≥ ½FðθÞ�−1
ν

≥
½FQðθÞ�−1

ν
ð2Þ

holds (in the matrix sense). The first inequality is the
Cramér-Rao bound, where

½FðθÞ�l;m ¼
X

k

∂lPðkjθÞ∂mPðkjθÞ
PðkjθÞ ð3Þ

is the d × d symmetric Fisher information matrix (FIM)
and ∂l ¼ ∂=∂θl. Since ∂lPðkjθÞ ¼ 2Re½h∂lψθjΠ̂kjψθi�, the
FIM depends on how the measurement set acts on the
Hilbert subspace H spanned by the probe state jψθi and
fj∂lψθigl¼1;…;d. Here Re½x� and Im½x� indicate the real and
imaginary part of x, respectively, and j∂lψθi ¼ −iĤljψθi,
where Ĥl ≡ i½∂lÛðθÞ�Û†ðθÞ is a Hermitian operator. The

Cramér-Rao bound can be established only if the FIM is
strictly positive (and thus invertible). In this case, it can
always be saturated, asymptotically in ν, by the maximum
likelihood estimator [38]. The second bound in Eq. (2) is
due to FðθÞ ≤ FQðθÞ [38], where FQðθÞ is the quantum
Fisher information matrix (QFIM),

½FQðθÞ�l;m ¼ 4Re½h∂lψθj∂mψθi� þ 4h∂lψθjψθih∂mψθjψθi:
ð4Þ

We recall that the inequality F ≤ FQ is understood in the
matrix sense; i.e., u⊤Fu ≤ u⊤FQu holds for arbitrary
d-dimensional real vectors u. The inverse of the
QFIM—when it exists—sets a lower bound (2) for the
simultaneous estimation of multiple parameters, called
the QCRB, which depends only on the probe state and
phase-encoding transformation. The QFIM allows you to
assess, for a given phase-encoding transformation, the
intrinsic merit of a particular probe state, optimized over
all measurements. There is a major problem though: While
in the single parameter case it is always possible to choose
an optimal measurement for which the equality F ¼ FQ

holds [39,40], in the multiparameter case (d > 1) such an
optimal measurement does not exist, in general. The search
for conditions under which the FIM saturates the QFIM has
long engaged the field of quantum metrology [38,42]. For
noncommuting operators, the main result available in the
literature is due to Matsumoto [42].
Weak commutativity theorem.—Given the pure state

jψθi, it is possible to saturate FðθÞ ¼ FQðθÞ if and only if

Im½h∂lψθj∂mψθi� ¼ 0; ∀ l; m: ð5Þ

To be more precise, the condition (5) is necessary, and, if
Eq. (5) holds and the QFIM is invertible, it is possible to
construct a set of projectors for which F ¼ FQ holds [42].
Note that the (strong) commutativity condition ½Ĥl;Ĥm�¼0
for all l, m implies Eq. (5), while F ¼ FQ is also possible
for noncommuting generators [36,42].
In general, any experimental apparatus is set by a

specific probe, transformation, and final measurement,
often taken to be projective. The saturation of the
QCRB indicates the optimal metrological performance,
and it is desirable to know whether there exist configura-
tions of the apparatus for which F ¼ FQ. The saturation
can be inspected explicitly (with a calculation of the FIM
and the QFIM); however, this may be technically demand-
ing, and failing at saturating would not give guidance on
how to improve the measurement. Furthermore, the weak
commutativity theorem provides specific measurements for
which F ¼ FQ holds that might not be those implemented
experimentally.
In the following, we provide three theorems giving

necessary and sufficient conditions on projective

measurement estimatorprobe state evolution

FIG. 1. General framework of multiparameter estimation con-
sidered in this Letter: A probe state jψi is prepared, transformed
according to the unitary parameter-dependent transformation
ÛðθÞ, and measured by a set of projectors fΠ̂kg. The vector
parameter is retrieved via an estimator ΘðkÞ, which is a function
of the measurement outcomes.
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measurements to saturate F ¼ FQ for an arbitrary generator
of phase encoding. These theorems indicate the full class of
projective measurements saturating the QFIM for pure
states. The knowledge of these optimal projectors provides
a guideline for designing future multiparameter estimation
experiments. It is worth pointing out that, if the FIM is
invertible, then our conditions become necessary and
sufficient to saturate the QCRB with projective measure-
ments. We discuss the main consequences of our findings
and the relation with existing results. The proof of the
theorems is detailed in Supplemental Material [45].
Theorem 1 (projective measurement orthogonal to the

probe).—Given a pure state jψθi and a set of projectors
fjϒkihϒkjg on the state itself (jϒ1i ¼ jψθi, for k ¼ 1) and
on the orthogonal subspace (hϒkjψθi ¼ 0, for k ≠ 1),
FðθÞ ¼ FQðθÞ holds if and only if

lim
φ→θ

Im½h∂lψφjϒkihϒkjψφi�
jhϒkjψφij

¼ 0; ð6Þ

for all l ¼ 1; 2;…; d and all k ≠ 1.
It is possible to demonstrate that Eq. (6) is consistent

with Eq. (5) [45]. In the single-parameter case (d ¼ 1),
where ÛðθÞ ¼ e−iĤθ and Ĥ is a Hermitian operator, Eq. (6)
is always satisfied [45,46]. In Ref. [31], it has been claimed
that any projective measurement orthogonal to the probe
state saturates the QFIM in the multiparameter case
(d > 1). We emphasize that only the projectors that satisfy
Eq. (6) saturate the QFIM. The condition (6) is highly
nontrivial: It is easy to find projective measurements that do
not fulfill Eq. (6), and for which F ≠ FQ; see the examples
at the end of this Letter.
We can perform the limit in Eq. (6) under the assumption

that hϒkj∂jψθi ¼ 0 does not hold for all j ¼ 1;…; d [45].
In this case, we have FðθÞ ¼ FQðθÞ if and only if

Im½h∂lψθjϒkihϒkj∂mψθi� ¼ 0; ð7Þ

for all indices l; m ¼ 1; 2;…; d and all k. If hϒkj∂jψθi ¼ 0

for all j ¼ 1;…; d, then it is possible to find conditions
similar to Eq. (7) and involving higher-order derivatives
[45]. A consequence of the above theorem is the following.
Corollary 1.—Given a probe pure state and unitary

transformations satisfying Eq. (5), it is always possible to
saturate FðθÞ ¼ FQðθÞ by a set of projectors given by the
probe state itself and a suitable choice of vectors on the
orthogonal subspace.
Here we explicitly construct optimal projectors saturat-

ing the QFIM. We recall that FðθÞ depends only on jψθi
and the d vectors fj∂mψθigm¼1;…;d. In general, the states
j∂mψθi are not orthogonal to the probe. To construct a set of
projectors orthogonal to jψθi, we introduce the set of states
jωmi≡ j∂mψθi þ jψθih∂mψθjψθi, for m ¼ 1;…; d [47].
These satisfy hψθjωmi¼2Re½h∂mψθjψθi�¼∂mhψθjψθi¼0.
The states jωmi are not orthogonal to each other, in general,

and we can introduce the d × d Gram matrix
Ωl;m ¼hωljωmi¼ h∂lψθj∂mψθiþh∂lψθjψθih∂mψθjψθi. It
should be noticed that, according to Eq. (5), the saturation
of the QFIM requires Im½Ω� ¼ Im½h∂lψθj∂mψθi� ¼ 0. We
thus necessarily restrict to matrices Ω that are real and
symmetric. In particular, FQ ¼ 4Ω [see Eq. (4)], and the
QFIM is positive definite (and thus invertible) if and only if
the states jωmi are linearly independent. We can construct
via the Gram-Schmidt process an orthogonal basis
of the subspace Hnjψθihψθj as linear combinations
jϒki ¼

P
d
m¼1 bm;kjωmi, with real coefficients bm;k. With

this choice, Eq. (7) is satisfied by the constructed set
fjϒkig, since h∂lψθjϒki ¼

P
d
m¼1Ωl;mbm;k is real. This

concludes the proof of the corollary.
Theorem 2 (projective measurement not orthogonal to

the probe).—Given a probe pure state jψθi and a set of
projectors fjϒkihϒkjg not orthogonal to the probe (i.e.,
hϒkjψθi ≠ 0 for all k), FðθÞ ¼ FQðθÞ holds if and only if

Im½h∂lψθjϒkihϒkjψθi� ¼ jhψθjϒkij2Im½h∂lψθjψθi�; ð8Þ

for all l ¼ 1; 2;…; d and all k.
In the single-parameter case, Eq. (8) becomes

Re½hψθjĤjϒkihϒkjψθi� ¼ jhψθjϒkij2hψθjĤjψθi, for all
ϒk. This is precisely the necessary and sufficient conditions
given in Ref. [48] for the saturation of the quantum Fisher
information for a single parameter. It is also possible to
demonstrate that Eq. (8) implies the weak commutativity
condition (5); see [45].
Corollary 2.—Given a pure probe state and unitary

transformations satisfying Eq. (5), there always exists a set
of projectors nonorthogonal to the probe which saturates
FðθÞ ¼ FQðθÞ.
We prove the corollary by constructing a set of projectors

that satisfy Eq. (8). Restricting to the subspace H, we can
decompose the states jϒki in the basis given by jψθi and
fj∂mψθigm¼1;…;d. We take jϒki ¼

P
d
m¼1 bm;kjωmiþ

bdþ1;kjψθi, where we require bdþ1;k ¼ hψθjϒki ≠ 0 for
all k. Equation (8) is fulfilled by taking real bm;k (for
m ¼ 1;…; dþ 1) and noticing that h∂lψθjωni is neces-
sarily real to fulfill Eq. (5) [49]. The real coefficients bm;k

must be chosen such that
P

kjϒkihϒkj ¼ 1. An orthonor-
mal set that fulfills all these conditions can be constructed
via the Gram-Schmidt process.
Theorem 3 (general projective measurement).—

Consider a probe pure state jψθi and a set of projectors
fjϒkihϒkjg. FðθÞ ¼ FQðθÞ holds if and only if Eq. (6) is
fulfilled for all indices l,m and all k for which hϒkjψθi ¼ 0
and Eq. (8) is fulfilled for all indices l and all k for
which hϒkjψθi ≠ 0.
Corollary 3.—Given a pure probe state and unitary

transformations satisfying Eq. (5), it is always possible to
find a set of projectors satisfying Theorem 3.
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The proof of this statement immediately follows from
Corollary 2 by taking real coefficients bm;k (for
m ¼ 1;…; d) and bdþ1;k either real and finite or equal to
zero. We point out that the projective measurement pre-
viously constructed by Matsumoto [42] to saturate the
equality FðθÞ ¼ FQðθÞ explicitly requires FQðθÞ to be
invertible, a condition which is not general and not required
in our case. It is possible to show that the specific class
of projective measurement used in the proof of the
weak commutativity theorem satisfies the conditions of
Theorem 3.
Examples.—In the following, we illustrate our theoreti-

cal results with experimentally relevant examples. Using
our theorems, we predict the saturation of FðθÞ ¼ FQðθÞ
and demonstrate that it is consistent with a direct calcu-
lation of the FIM and the QFIM.
Let us consider an n-mode Mach-Zehnder interferometer

(MZI) that allows the simultaneous estimation of multiple
(up to n − 1) phases. Three- and four-mode MZIs are
currently within the reach of present technology [43,44,50].
We first discuss the three-mode case with a Fock state
jψi ¼ j1; 1; 1i as input. The initial step of the interferom-
eter is a three-mode splitter, a tritter, described by the

unitary matrix Uð3Þ
j;k ¼ 3−1=2ei2π=3ð1−δj;kÞ. We consider the

estimation of the phase difference θ1 ¼ ϕ1 − ϕ3 and
θ2 ¼ ϕ2 − ϕ3, where ϕ1, ϕ2, and ϕ3 are the shifts of each
interferometric mode. After phase encoding, the modes
recombine at a second tritter described by a unitary matrix
½Uð3Þ�−1 [45]. Finally, photons in each mode are counted.
This measurement corresponds to a projection over all the
possible states jϒki ¼ ji; j; hi with iþ jþ h ¼ 3. We test
the conditions (6) and (8) for different values of
θ ¼ ðθ1; θ2Þ. In particular, for θ ¼ ð0; 0Þ, we have a
projection over the probe state and over the orthogonal
subspace. We find that the conditions (6) and (8) are not
fulfilled. In order to verify the results of our theorem, we
calculate explicitly F and FQ and plot, in Fig. 2(a), ∥F −
FQ∥2 by varying θ (the norm ∥F − FQ∥2 ranges from 0 to
∥FQ∥2 that is equal to 8 in this case [45]). We find that
FðθÞ ≠ FQðθÞ (∥F − FQ∥2 > 3=4, in particular), consistent
with the predictions of our theorems. We have repeated the
analysis for a four-mode interferometer, consisting of two
cascaded quarters, with a four-photon j1; 1; 1; 1i Fock state
as input. The quarters are optical devices represented by the

unitary matrix Uð4Þ
j;k ¼ 2−1ð−1Þ1−δj;k . To directly compare

with the three-mode case and for the sake of illustration, we
consider again the estimation of two phases [51] and
choose photon-counting measurement. In this case, for
certain values of θ the conditions (6) and (8) are fulfilled,
and the QFIM is saturated for the estimation of the two
phases simultaneously [see Fig. 2(b)]: These are the values
θ1 ¼ θ2 ∈ ½0; π� (dashed line) and the points θ ¼ ð0; πÞ and
θ ¼ ðπ; 0Þ (circles). Consistently, by a direct calculation we
find that ∥F − FQ∥2 ¼ 0 for these values of θ. This result

can be generalized by considering that multiport symmetric
beam splitters can be constructed from Sylvester matrices,
which can be defined in dimension n ¼ 2m (with m an
integer) and have all real coefficients equal to �1 [52]. By
employing an n-photon Fock state as the probe and photon
counting as themeasurement, theQFIM for the simultaneous
estimation of d ¼ n − 1 phases can always be saturated by
checking condition (7) when θi ¼ 0 for i ¼ 1;…; d.
Conclusions.—We have provided necessary and suffi-

cient conditions on projective measurements to saturate the
quantum Fisher information matrix in the case of pure
probe states. We have also shown how to construct such
optimal projectors and have tested the theory for exper-
imentally relevant configurations. Finally, we recall that our
conditions become necessary and sufficient for the Cramér-
Rao bound to saturate the quantum Cramér-Rao bound
when the quantum Fisher information matrix is invertible.
Our results are a step forward to the theoretical under-
standing of multiparameter estimation and a key for the
experimental design of future quantum imaging and multi-
parameter metrology devices.
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