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In conventional insulating magnets, heat is carried by magnons and phonons. In contrast, when the
magnets harbor a quantum spin liquid state, emergent quasiparticles from the fractionalization of quantum
spins can carry heat. Here, we investigate unconventional thermal transport yielded by such exotic carriers,
in both longitudinal and transverse components, for the Kitaev model, whose ground state is exactly shown
to be a quantum spin liquid with fractional excitations described as itinerant Majorana fermions and
localized Z2 fluxes. We find that the longitudinal thermal conductivity exhibits a single peak at a high
temperature, while the nonzero frequency component has a peak at a low temperature, reflecting the spin
fractionalization. On the other hand, we show that the transverse thermal conductivity is induced by the
magnetic field in a wide temperature range up to the energy scale of the bare exchange coupling; while
increasing temperature, the transverse response divided by temperature decreases from the quantized value
expected for the topologically nontrivial ground state and shows nonmonotonic temperature dependence.
These characteristic behaviors provide experimentally accessible evidence of fractional excitations in the
proximity to the Kitaev quantum spin liquid.
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Insulatingmagnets provide a paradigmatic playground for
quantummany-body effects in the spin degree of freedom of
electrons in solids. In conventional magnets, the elementary
excitation is known asmagnonswhich describe the collective
modes associated with long-rangemagnetic orders. Once the
ordering is suppressed by strong quantum fluctuations,
however, themagnets may possess exotic excitations yielded
by the quantummany-body effects. Fractional quasiparticles
in quantum spin liquids (QSLs), where any spontaneous
symmetry breaking does not appear even at zero temperature
(T), are archetypal examples of such exotic excitations [1,2].
For instance, in the celebrated resonating-valence-bond state,
the low-energy excitations are described by spinons, spin-
1=2 fermionic quasiparticles, which may bring about an
emergent Fermi surface despite insulating magnets [3,4].
Considerable efforts have been devoted to experimental
observation of such itinerant nature, e.g., in the low-T
behavior of the specific heat and the thermal transport
[5–7].Nevertheless, identifying the fractionalization remains
elusive because of obstacles in experiments and the lack of
detailed theoretical information.
Recently, a quantum spin model, whose ground state is

exactly shown to be a QSL, was proposed by Kitaev [8].
The elementary excitations in the Kitaev QSL are described
by two types of quasiparticles emergent from the fraction-
alization of quantum spins: itinerant Majorana fermions
and localized Z2 fluxes. Moreover, it was pointed out that
this Kitaev model may give a good description of spin-
orbital entangled magnets [9], such as A2IrO3 (A ¼ Li, Na)
and α-RuCl3. On this basis, precursors of the Kitaev QSL
have been investigated in these materials, e.g., by the

neutron and Raman scattering measurements [10,11], in
comparison with the theoretical calculations [12–17]. Very
recently, some attempts have been made to grasp the itinerant
nature of the Majorana fermions by measuring the thermal
conductivity [18–20]. While theoretical works have been
done for the thermal transport in one-dimensional Kitaev
systems [21,22] and that carried by magnons in magnetically
ordered states in the Kitaev-Heisenberg model [23], the
thermal conductivity owing to the Majorana fermions
emergent in the two-dimensional Kitaev QSL remains
unclear. Furthermore, an applied magnetic field can change
the topology of the Majorana fermion states [8], which may
lead to the quantized transverse conductivity in the low-T
limit. Thus, theoretical inputs are highly desired for the
thermal transport in both longitudinal and transverse com-
ponents for the Kitaev model as a canonical reference.
In this Letter, we investigate the thermal transport

originating from the emergent fractional quasiparticles in
the Kitaev model. Using quantum Monte Carlo (QMC)
simulations, we calculate the T dependences of both
longitudinal and transverse thermal conductivities, with
and without the weak magnetic field. We find that, in the
absence of the magnetic field, the longitudinal zero-
(nonzero-)frequency component exhibits a broad peak
around the higher- (lower-)T peak of the specific heat.
In an applied magnetic field, we show that, while the
longitudinal component remains intact, the transverse
component is induced in a wide T range; the latter divided
by T shows nonmonotonic T dependence with rapidly
approaching a quantized value at low T. We discuss these
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peculiar behaviors from the viewpoint of thermal excita-
tions of the fractional quasiparticles.
We consider the Kitaev model in an external magnetic

field applied perpendicular to the honeycomb plane. The
spin axis is taken by following Ref. [9] so as to be relevant
to candidate materials like A2IrO3 (A ¼ Li, Na) and
α-RuCl3. The Hamiltonian is given by

H ¼ −J
X

γ¼x;y;z

X

hjj0iγ
SγjS

γ
j0 − h

X

j

ðSxj þ Syj þ SzjÞ; ð1Þ

where hjj0iγ represents a nearest-neighbor pair on one of
three sets of inequivalent bonds, Sj ¼ ðSxj ; Syj ; SzjÞ is an S ¼
1=2 operator at position rj, J is the exchange constant
assumed to be isotropic for three types of bonds,
and h represents the magnetic field strength; see the inset
of Fig. 1(d). In the absence of the magnetic field (h ¼ 0),
the ground state of the Kitaev model is exactly obtained by
introducing itinerant Majorana fermions and localized Z2

fluxes Wp, the latter of which are defined for each
hexagonal plaquette p on the honeycomb lattice [8]. The
ground state is given by all Wp ¼ þ1 (flux-free state), and

the system is in a gapless QSL phase where the itinerant
Majorana fermion spectrum forms the massless Dirac
nodes. In contrast, there is a nonzero gap Δ ∼ 0.065J in
the excitation of the localized Z2 fluxes.
When h is small enough compared to Δ, one can derive

an effective model by using the third-order perturbation,
whose Hamiltonian is given by [8]

~H ¼ −J
X

γ¼x;y;z

X

hjj0iγ
SγjS

γ
j0 − ~h

X

½jj00j0�αβγ
Sαj S

β
j00S

γ
j0 ; ð2Þ

where the effective magnetic field ~h ∼ h3=Δ2; ½jj00j0�αβγ
represents three neighboring sites, where the neighboring
pair jj00 (j00j0) are located on an α (γ) bond and β is taken to
be neither α nor γ. The Hamiltonian ~H is exactly soluble for
all ~h, whileH in Eq. (1) is not for h ≠ 0 [8]. This is shown,
e.g., by introducing two kinds of Majorana fermions cj and
c̄j [24–26], which enable us to rewrite the Hamiltonian into

a bilinear form in terms of ci as ~H ¼ 1
2

P
jj0cjAjj0 ðfηbgÞcj;

AðfηbgÞ is a pure-imaginary Hermite matrix dependent on
ηb ¼ ic̄jc̄j0 , which is a Z2 conserved quantity taking �1 on
the z bond b ¼ hjj0iz [27]. The flux in the plaquette p is
given by Wp ¼ ηb1ηb2, where b1 and b2 are the z bonds
included in the hexagon p. The three-spin term in Eq. (2)
turns into second-neighbor hopping of cj in the bilinear
Hamiltonian. Interestingly, this hopping term opens a gap
in the Dirac spectrum of the Majorana fermion system and
yields a chiral edge mode within the gap [8], similar to the
Haldane model showing the quantum anomalous Hall
effect in a zero magnetic field [28]. This topological nature
was confirmed for the original model in Eq. (1) [29].
We note that, in addition to the second term in Eq. (2), the
third-order perturbation in terms of h leads to another three-
spin interaction described by interactions between the
Majorana fermions c, which is supposed be irrelevant to
the Dirac gap opening and omitted in the following
analysis [8,30].
The bilinear Majorana representation for Eq. (2) allows

us to perform QMC simulations without the negative sign
problem [15,31,32]. To evaluate the thermal conductivity,
we introduce the energy polarization operator defined as
PE ¼ P

jj0 ½ðrj þ rj0 Þ=2� ~Hjj0 , where ~Hjj0 ¼ 1
2
cjAjj0cj0 [33].

We set the Boltzmann constant kB and the reduced Planck
constant ℏ to be unity. The energy current is introduced as
JE ¼ ðdPE=dtÞ ¼ i½ ~H;PE�. Note that JE includes not only
fcjg but also fηbg in the Majorana fermion representation
[27]. In the Majorana fermion system, as the chemical
potential is always fixed to zero regardless of the configu-
ration of fηbg, the energy current is equivalent to the heat
current JQ. The thermal conductivity κμν (μ; ν ¼ x, y)
is obtained by using the Kubo formula as κμνKuboðωÞ¼
ð1=TVÞR∞

0 dteiðωþiδÞtR β
0 dλhJμQð−iλÞJνQðtÞi, where JμQðtÞ ¼

ei ~HtJμQe
−i ~Ht, β ¼ 1=T is the inverse temperature, V is the
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FIG. 1. (a) Longitudinal thermal conductivity, κxx ¼
limω→0κ

xxðωÞ and (b) κxx=T as functions of T. In (a), we also
plot the specific heat Cv for L ¼ 20. T� and T�� are two crossover
temperatures, determined from the broad peaks inCv. (c) Contour
map of κxxðωÞ on the T-ω plane calculated for the L ¼ 20 cluster.
(d) Integrated intensity Ixx ¼ R∞

0 κxxðωÞdω. The inset of (d)
represents the honeycomb lattice on the xy plane where the
Kitaev model is defined in an applied magnetic field h along the z
direction [Eq. (1)]. The different bond colors illustrate three
different types of bonds in the Kitaev model.
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volume of the system, and δ is a positive infinitesimal
constant. While the longitudinal component is simply given
by κμμðωÞ ¼ κμμKuboðωÞ, the transverse component κμνðωÞ
needs a contribution from “the gravitational magnetization”
in addition to κμνKuboðωÞ [34,35]. We calculate κμνðωÞ on the
30 × 30 superlattice of the 2L2-site cluster with configu-
rations of fηrg generated by the QMC simulations [36,37]:
we take 300 samples from the 40 000MC steps after 10 000
MC steps for thermalization. The details of the calculation
are given in the Supplemental Material [27].
First, we examine the longitudinal component of the

thermal conductivity κxxð¼ κyyÞ in the absence of a
magnetic field ~h ¼ 0. Figure 1(a) shows the T dependence
of κxx ¼ limω→0κ

xxðωÞ [27]. We also display the specific
heatCv in Fig. 1(a).Cv has two broad peaks at T� ≃ 0.012J
and T�� ≃ 0.375J due to thermal fractionalization [32]: the
low-T crossover at T� comes from the release of a half of
ln2 entropy related to the localized Z2 fluxesWp, while the
high-T one at T�� is by the rest half from the itinerant
Majorana fermions. In contrast, we find that κxx exhibits
only a single broad peak near T��. The result is far from the
conventional wisdom that predicts κxx ∝ Cv. This discrep-
ancy is a direct consequence of the thermal fractionalization
of quantum spins. Among the fractional quasiparticles,
only the itinerant Majorana fermions can carry heat. Hence,
κxx has a substantial contribution only near T�� where the
itinerant Majorana fermions release their entropy.
We also present κxx=T in Fig. 1(b). As decreasing T, this

quantity increases from zero around T��, and decreases
with approaching T� after showing a broad hump at
T ∼ 0.1J. Below T�, κxx=T appears to approach ∼1=12,
although the size dependence and statistical errors become
comparatively large. The asymptotic behavior might be
related to the minimum conductivity in graphene with
disorder [38,39], as thermally excited Z2 fluxes are
regarded as scatterers for the itinerant Majorana fermions
moving on the honeycomb lattice [40]. We note that the
thermal conductivity by Majorana fermions is halved from
that by electrons [34], leading to the asymptotic behavior
κxx ∼ T=12 as predicted in Ref. [43].
Figure 1(c) shows the contour map of κxxðωÞ on the

T-ω plane. κxxðωÞ has a low-ω weight around T��, which
gives the peak of the ω → 0 limit, i.e., κxx in
Fig. 1(a). On the other hand, the weight is shifted to a
higher-ω region as lowering T, and enhanced to form a
broad peak at ω ∼ J around T�. This might be related to the
T dependence of the Majorana fermion density of states
[27,32]. The weight is reduced rapidly for further lowering
T below T�. We note that κxxðωÞ completely vanishes at
T ¼ 0 as the Kitaev Hamiltonian commutes with the
energy current in the flux-free ground state owing to the
particle-antiparticle equivalence of Majorana fermions
[27]. We plot the integrated thermal conductivity defined
by Ixx ¼ R

∞
0 κxxðωÞdω in Fig. 1(d) as a measure of the

finite-ω response. As increasing T from T ¼ 0, Ixx rapidly

grows from zero and forms a broad peak around T�
originating from the contribution at ω ∼ J of κxxðωÞ, while
it decreases in the higher-T region after showing a shoulder
around T��. Thus, the nonzero-frequency thermal response
is a good measure for a proliferation of localized Z2 fluxes
at T ≃ T�. This counterintuitive result is attributed to a
modulation of the itinerant Majorana fermion state by the
coupling to thermally excited fluxes.
Next, we show the results in the presence of the magnetic

field in Fig. 2. Here, we consider the weak ~h range in
Eq. (2) where the field-induced Majorana gap is smaller
than the flux gap [27]. In this range of ~h, the double-peak
structure of Cv hardly changes [27], and hence, we indicate
T� and T�� for ~h ¼ 0 in Fig. 2. Similarly, the longitudinal
thermal conductivity κxx is also almost unchanged by ~h as
shown in Fig. 2(a) [27], while the effect of ~h is seen in the
low-T behavior of κxx=T, as shown in Fig. 2(b): κxx=T at
T → 0 vanishes, reflecting the Dirac gap in the Majorana
spectrum for nonzero ~h.
On the other hand, the magnetic field gives rise to a

drastic response in a wider T range in the transverse thermal
conductivity κxy. As mentioned above, in the gapped
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FIG. 2. (a) κxx, (b) κxx=T, (c) κxy, and (d) κxy=T in the magnetic
field ~h. The data are calculated for L ¼ 8, 10, and 12, but we
show only the data for L ¼ 12 as they are indistinguishable
within the statistical errors. In (d), we also plot κxy=T calculated
for the flux-free (dashed-dotted curve) and random flux (solid
curve) cases at ~h=J ¼ 0.048.
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ground state for nonzero ~h, the system has a chiral edge
mode inside the gap, which may lead to nontrivial
topological phenomena such as off-diagonal transport
[8], as in the massive Dirac fermion systems [44]. Here,
we compute the ~h and T dependence of κxy [Fig. 2(c)]. Note
that κxy is directly obtained without any extrapolation in
terms of ω, in contrast to κxx [27]. We find that ~h induces
κxy in a wide T range up to T ∼ J, showing a broad peak
around T�� similar to κxx. However, the ~h dependence of κxy

is distinct from that of κxx; the peak is enhanced by the
magnetic field continuously from ~h ¼ 0.
Remarkably, κxy shows a nonmonotonic T dependence,

as more clearly displayed by κxy=T in Fig. 2(d); while
decreasing T, κxy=T increases from zero around T��, and
shows a hump at T ∼ 0.1J similar to κxx=T in Fig. 2(b), but
eventually, it arises again and converges a quantized value
π=12 as T → 0. The asymptotic value π=12 is derived from
the edge current predicted in Ref. [8], which corresponds to
a half of the quantized thermal Hall coefficient in conven-
tional Chern insulators [34,35]. The low-T plateau of κxy=T
is supported by the flux gap, and the deviationwhile raisingT
is caused by the Majorana fermions activated by thermally
excited fluxes [27]. In Fig. 2(d), we compare the QMC data
with those for the flux-free state (all Wp ¼ þ1) and the

random Wp configuration at ~h ¼ 0.048J. For the latter, we
evaluate κxy=T from 103 random configurations of fηbg.
When we assume the flux-free configuration, κxy=T mono-
tonically decreases from the quantized value with increasing
T. The QMC result deviates from this behavior with a more
rapid decrease around T� where the Z2 fluxes are thermally
proliferated, as shown in Fig. 2(d). On the other hand, for the
random configuration, κxy=T shows a hump around
T=J ∼ 0.1, which well accounts for the QMC data. This
analysis clearly indicates that the nonmonotonic T depend-
ence of κxy=T is yielded by thermal excitation of Z2 fluxes
from the flux-free topological ground state. In particular, the
rapid decrease and the dip formation around T� reflect the
proliferation of Z2 fluxes [27].
We show the field dependence of the longitudinal and

transverse components of the thermal conductivity in
Fig. 3, which are even and odd functions of ~h, respectively.
Although κxx=T does not strongly depend on ~h as shown in
Fig. 3(a), κxy=T increases linearly to ~h in the small ~h region,
and saturates to the quantized value π=12 for a large
magnetic field, as shown in Fig. 3(b). While decreasing T,
the slope increases and the saturation field decreases, and
finally, κxy=T ¼ sgnð ~hÞπ=12 at T ¼ 0 [8,34]. The low-field
behavior indicates that κxy=T ∝ h3, where h is the magnetic
field in the original Hamiltonian in Eq. (1). The peculiar h
dependence is one of the striking features in the unconven-
tional thermal Hall effect in the paramagnetic state proxi-
mate to the QSL.

Finally, we discuss the relevance of our results to Kitaev
candidate materials, such as A2IrO3 (A ¼ Li and Na) and
α-RuCl3. Although these materials exhibit a magnetic order
below TN ∼ 10 K [45,46], the Kitaev interaction has a
much larger energy scale compared to TN [10,47–51]: the
low-T magnetic order is considered to appear due to small
additional interactions. Therefore, the present results will
be compared with the experimental data in the paramag-
netic state above TN where the magnetic properties are
expected to be dominated by the Kitaev interaction. For
instance, the high-T anomalous contribution in κxx

observed in α-RuCl3 [18] is likely consistent with our
results. Although it might be difficult to experimentally
distinguish the magnetic contribution from others such as
phonons, recent experiments for other QSL candidates
indicate that the phonon contribution is significantly small
in κxy [7,52]. Thus, a nonzero κxy up to well above TN will
be more compelling evidence for the fractional excitations:
the nonmonotonic T dependence of κxy=T comparable to
the quantized value as well as the h3 dependence is a direct
consequence of the presence of the Majorana chiral edge
mode and the thermal fluctuation of the Z2 fluxes intrinsic
in Kitaev physics.
In summary, we have investigated the thermal transport

in the Kitaev model at finite T with and without an applied
magnetic field using QMC simulations. We found that both
longitudinal and transverse conductivities provide good
probes for fractional quasiparticles, itinerant Majorana
fermions and localized Z2 fluxes, inherent to the Kitaev
QSL. The ω ¼ 0 component of the longitudinal thermal
conductivity exhibits a single peak structure around T��,
which is attributed to the itinerant Majorana fermions,
while the dynamical component is enhanced around T� due
to the proliferation of the fluxes. In the presence of the
magnetic field, the transverse component becomes nonzero
and the transverse thermal conductivity divided by T
exhibits a hump below T��, and rapidly approaches a
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quantized value in the low-T limit. We revealed that this
peculiar T dependence is due to thermally excited Z2 fluxes
and the gapped Majorana spectrum in the magnetic field.
Moreover, we found that the transverse conductivity is
induced proportional to the third order of the magnetic
field, while the longitudinal one is almost unchanged by
the magnetic field. To our knowledge, the results provide
the first quantitative theory for the thermal transport in the
Kitaev model at finite T, which will be useful for the
identification of QSL signatures in Kitaev candidate
materials.
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