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The Lieb-Schultz-Mattis (LSM) theorem and its extensions forbid trivial phases from arising in certain
quantum magnets. Constraining infrared behavior with the ultraviolet data encoded in the microscopic
lattice of spins, these theorems tie the absence of spontaneous symmetry breaking to the emergence of
exotic phases like quantum spin liquids. In this work, we take a new topological perspective on these
theorems, by arguing they originate from an obstruction to “trivializing” the lattice under smooth,
symmetric deformations, which we call the “lattice homotopy problem.” We conjecture that all LSM-like
theorems for quantum magnets (many previously unknown) can be understood from lattice homotopy,
which automatically incorporates the full spatial symmetry group of the lattice, including all its point-group
symmetries. One consequence is that any spin-symmetric magnet with a half-integer moment on a site with
even-order rotational symmetry must be a spin liquid. To substantiate the claim, we prove the conjecture in
two dimensions for some physically relevant settings.
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Quantum magnets arise naturally in Mott insulators,
where strong Coulomb repulsion freezes the position of
electrons and leaves behind their spin degrees of freedom.
With strong frustration, quantum fluctuations can suppress
spin ordering and lead to symmetric, quantum-entangled
phases of matter that survive down to zero temperature.
Quantum spin liquids, the spin analogues of fractional
quantum Hall states, represent one of the most sought-after
phases arising in this context [1]. They possess intrinsic
topological order with emergent fractionalized excitations,
which have been proposed as a useful resource for robust
quantum computation [2,3].
Detecting whether a quantum magnet is a spin liquid, a

many-body problem, is notoriously hard. Conventionally,
the absence of symmetry breaking is regarded as an
indicator for spin-liquid physics [3,4]. However, a sym-
metric quantum magnet could also be in a symmetry-
protected topological (SPT) phase, like the spin-1 Haldane
chain [5,6] and its generalizations [7], which does not
support fractionalized excitations despite a nontrivial
degree of entanglement. Conceptually, there is a sharp
distinction between these phases: spin liquids are long-
range entangled (LRE), and are necessarily either gapless
or topologically ordered, while SPT phases are only short-
range entangled (SRE). Experimentally, however, such
distinction is subtle and one must rely on additional criteria
to rule out all symmetric SRE (sym-SRE) phases before
claiming discovery of a spin liquid.
Fortunately, it is possible to rule out all sym-SRE phases

in certain quantum magnets on purely theoretical grounds.

This line of reasoning was pioneered by Lieb, Schultz, and
Mattis (LSM), who proved that any one-dimensional
quantum magnet with both lattice-translation and spin-
rotation symmetries cannot be sym-SRE if each unit cell
contains a half-integral total spin [8]. Multiple generaliza-
tions of the LSM theorem have since been made, covering
systems in higher dimensions and with less stringent
physical assumptions [9–17]. We will collectively refer
to these results as “LSM-like theorems.” The common
denominator of these generalizations is a constraint
between the microscopic details of the system, specifically
the lattice and the symmetry-transformation properties of
the sites’ Hilbert spaces, and the degree of ground-state
degeneracy. Since any sym-SRE phase is expected to have
a gapped, unique ground state on any thermodynamically
large space without defects or boundaries, all sym-SRE
phases are ruled out whenever the degeneracy is con-
strained to be nontrivial. In this sense, the LSM-like
theorems are “no gos” for sym-SRE phases.
One important direction for generalization is to make

fuller use of the spatial symmetries of the system. This
was partially addressed in Refs. [15–17], which showed
that combinations of nonsymmorphic symmetries like
glides and screws, being “fractions” of the lattice trans-
lations, can lead to stronger no gos. Ideally, to expose the
strongest constraints one would attempt to utilize all
spatial symmetries of the problem. However, the non-
symmorphic generalizations in Refs. [15–17] ignore all
point-group symmetries (e.g., rotations), which fix at least
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one point in space. New techniques are required for the
desired extension.
In this work, we address the problem of incorporating all

spatial symmetries in deriving stronger LSM-like no gos,
which are operative even when all earlier theorems are not.
We will rely on two key insights. First, the presence of a no
go should be insensitive to a smooth, symmetric deforma-
tion of the underlying lattice. We will refer to the study of
such deformations as the “lattice homotopy problem.”
Second, there is a strong sense of locality in sym-SRE
phases due to the limited range of entanglement, and
therefore, compared to more exotic phases like spin liquids,
they respond in a more conventional manner when fluxes
are inserted into the system. Combining these observations,
we conjecture that a quantum magnet which is nontrivial
under lattice homotopy is obstructed from being sym-SRE.
In the following, we will elaborate on the conjecture,

which encompasses all earlier LSM-like theorems for
quantum magnets, and then offer a physical argument
for its proof restricting to 2D systems with an internal
symmetry group G being either finite Abelian or SO(3). As
an example, we will show that sym-SRE phases are
forbidden whenever a half-integer spin, carrying a projec-
tive representation of SO(3), sits at an even-order rotation
center. Intuitively, this is because any symmetric deforma-
tion brings in an even number of spins, which cannot screen
the half-integer moment at the center.
Statement of the conjecture.—Consider a quantum

magnet with Hamiltonian Ĥ defined on a lattice Λ. For
simplicity, we will first assume Ĥ is symmetric under the
group G ¼ SOð3Þ of spin rotations, and later discuss how
the ideas apply to more general on-site symmetry groups.
We are interested in whether Ĥ can be in a sym-SRE phase.
As demonstrated by the LSM-like theorems, the micro-
scopic data encoded in Λ may present an obstruction. The
key ingredient in our argument will be the spatial distri-
bution of half-integer vs integer spins. Therefore, as far as
obstructions are concerned, we view Λ as a lattice of black
and white circles, denoting half-integer and integer spins,
respectively (Fig. 1). No obstruction is expected on a lattice
composed only of integer spins, and we say such lattices are
“trivial.” In addition, the presence of obstructions should
be insensitive to a smooth deformation of the lattice,
provided that the deformation respects all spatial sym-
metries [Fig. 1(e)]. This motivates the following conjecture:
Conjecture—A sym-SRE phase is possible only when Λ

is smoothly deformable to a trivial lattice.
Let us make precise what is meant by a “smooth

deformation.” We suppose the magnet is symmetric under
a space group S. By deformation, we refer first to a
collective, S-symmetric movement of sites. Second, when
sites collide they “fuse;” since we only keep track of the
integer vs half-integer nature of the sites, the fusion follows
a Z2 rule [Figs. 1(a)–1(d)]. In this process, an even number
of half-integer sites may annihilate. Generally, when a

collection of sites are symmetrically collapsed at a point,
the number of sites involved is determined by the degree of
the point-group symmetry. We also allow the inverse of
fusion, in which half-integer spins are created in pairs.
A sequence of such deformations defines an equivalence

relation between lattices, and we refer to the enumeration of
the resulting equivalence classes [Λ] as the “lattice homo-
topy” problem. f½Λ�g naturally forms an Abelian group
under stacking, with the empty (trivial) lattice the identity
element. The conjecture is that a sym-SRE obstruction is
present whenever a lattice belongs to a nontrivial class. We
note that all the previously known LSM-like theorems
feature nontrivial lattices [8–17].
Thanks to its geometrical nature, lattice homotopy can

often be computed in an intuitive manner. For instance,
consider a 1D translation and mirror symmetric spin chain.
Spins at generic positions can be smoothly brought to the
mirror planes, where they will annihilate pairwise. Since
this cannot change the color on the mirror plane, the only
lattice invariant is the color at the two inequivalent mirror
planes in a unit cell, giving a ½Λ� ∈ Z2 × Z2 classification
[Figs. 1(f)–1(i)]. In fact, a no go for the three nontrivial
elements was already proven in Ref. [17]. Together with the
original LSM theorem invoking only translations, this
proves the conjecture for the two 1D space groups.
As another example, a square lattice of spin-1=2

moments is nontrivial, but that of spin-1 is trivial. This
is consistent with the known LSM-like theorems for the
former [9–13], and the existence of sym-SRE phases for the
latter [18]. A more intriguing example is a honeycomb
lattice of half-integer spins, which is symmetric under both

=

=

=+

=+

(e)

(j)

(f )

(g)

(h)

(i)

(a)

(b)

(c)

(d)

= =

FIG. 1. Lattice homotopy. (a)–(d) Representations of the
rotation group SO(3) fuse following a Z2 rule. Open and filled
circles, respectively, denote the representations of integer and
half-integer spins. (e) A smooth deformation of a lattice (circles)
symmetric under mirror planes (dashed lines) and threefold
rotations (about the stars). (f)–(i) There are two inequivalent
sites (big and small circles) in each unit cell (shaded) of a mirror-
symmetric 1D lattice. Under lattice homotopy, there are four
distinct lattice classes. (j) Assuming the symmetries of (e), a
honeycomb lattice of half-integer spins is equivalent to a kagome
lattice of integer spins, as demonstrated by the depicted smooth
deformation.
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threefold rotations and mirrors. As shown in Fig. 1(j),
the lattice is smoothly deformable to a kagome lattice of
integer spins, and therefore belongs to the trivial class.
Interestingly, this picture is consistent with a recent con-
struction of sym-SRE wave functions [18,19].
It is conceptually revealing to generalize the internal

symmetry group G in the discussion above beyond SO(3)
spin rotations. We assume that the total symmetry group is
a direct product of the internal and space group symmetries,
G × S, where S acts by permuting the sites. (The case with
“spin-orbit coupling” is an interesting future direction.) The
role of “half-integer” vs “integer” spin is now played by the
Abelian group of distinct projective representations of G,
H2½G;Uð1Þ�. The Z2 fusion of spins generalizes to group
multiplication in H2½G;Uð1Þ�, and the above conjecture
naturally carries over to this more general setting.
The resulting group of lattice homotopy classes depends

on G. For instance, suppose G is such that the projective
representations have Z3 fusion, and consider again the 1D
lattice with reflection symmetry. If two copies of a
projective representation [ω] approach a mirror plane, they
do not annihilate, since ½ω�2 ¼ ½ω�−1 in Z3. Consequently,
the projective representation on a mirror plane is not
conserved, and the lattice homotopy classification collapses
down to Z3.
Computing the lattice classification can be automated by

a reduction to the properties of high-symmetry points
(Wyckoff positions). We relegate details to Sec. I of the
Supplemental Material [20]. In Table I, we tabulate the
lattice classification results for all 2D space groups. Here,
we present the case relevant to spins, H2½G;Uð1Þ� ¼ Z2—
the general form, which extends readily to any finite
Abelian H2½G;Uð1Þ�, is tabulated in the Supplemental
Material [20], Table I.
Proof of conjecture in 2D.—We now sketch a physical

argument supporting the conjecture for quantum magnets
symmetric under any of the 17 2D space groups, assuming
G ¼ SOð3Þ or is finite Abelian. The logic proceeds by first
deriving three concrete conditions on Λ, each implying a
no go for sym-SRE phases: (i) Bieberbach no go. A
“fundamental domain” D is a region which tiles the plane
under the action of translation and glide symmetries. If the
total projective representation in D is nontrivial, ½ω�D ¼Q

r∈D½ω�r ≠ 1, then a sym-SRE phase is forbidden [17].

(ii) Mirror no go. Let l be a mirror-line parallel to a
translation T∥. We define the projective representation per
unit length of l, ½ω�l ¼ Q

r∈l0 ½ω�r, by letting the product
runs over a unit-length interval l0 of l as defined by T∥. If
½ω�l does not have a “square-root,”, i.e., if no ζ ∈ Zn

satisfies ½ω�l ¼ ζ2, then a sym-SRE phase is forbidden
[17]. (iii) Rotation no go. Let r be a site with rotational
point-group symmetry Cm and projective representation
½ω�r. If ½ω�r does not have an “mth root,”, i.e., if no ζ ∈ Zn
satisfies ½ω�r ¼ ζm, then a sym-SRE phase is forbidden.
We then show that these no gos forbid a sym-SRE phase in
a 2D lattice Λ if and only if ½Λ� ≠ 1. Both the Bieberbach
and mirror no gos were derived in an earlier work [17], so
here we focus on illustrating the key ideas behind the
derivation of the “rotation no go”—the key missing piece
for establishing the conjecture in two dimensions—with
further details given in Sec. II of the Supplemental
Material [20].
Derivation of the rotation no go.—For simplicity, we

will illustrate the ideas using systems symmetric under
G ¼ SOð3Þ and C2 rotation. Roughly speaking, we will
modify the Hamiltonian by inserting a pair of C2-related
spin fluxes, and show that when a half-integer moment lies
on a C2-invariant point, the system has a symmetry-
protected degeneracy. We will then argue that, despite
the presence of fluxes, such degeneracy remains impossible
in sym-SRE phases, and thereby arriving at a no go.
We begin with the following observation: While a sym-

SRE phase has a gapped, unique ground state onRd, it may
possess symmetry-protected ground-state degeneracy in the
presence of defects or boundaries (a notable example being
the edge states of the AKLT chain). In contrast to LRE
phases, however, the degeneracies in a sym-SRE phase
should be “localized” to the defect regions (for example,
each edge of the AKLT chain carries an independent
twofold degeneracy). Physically, this arises because a
sym-SRE phase can only respond to local data, defined
with respect to the correlation length ξ, so it should not be
possible to “share” a degeneracy between two distant defect
regions (note we are only considering bosonic models;
certain fermionic SPTs violate this assumption [25]).
To formalize this intuition we introduce the notion of

degeneracy localization (Sec. III of the Supplemental
Material [20]). A “defect region” is a region in which
the Hamiltonian is not local-unitarily equivalent to the
Hamiltonian of the bulk [17] (examples could include an
impurity spin, dislocation, or external flux), and we let
fRðiÞ∶i ¼ 1;…; NDg be a collection of defect regions of
finite extent, which are separated from each other on
distances r ≫ ξ. We say the system exhibits degeneracy
localization if each RðiÞ can be modeled as an emergent
di-dimensional, degenerate, degree of freedom, so that the
total ground-state subspace H0

GS is (
QND

i¼1 di dimensional.
This implies that if Û is a local operator taking the
ground-state subspace H0

GS into itself (e.g., a symmetry),

TABLE I. The lattice homotopy classification for the 17
wallpaper groups, assuming Z2 projective representations, as
in the case for spin-rotation invariant quantum magnets.

Lattice homotopy Wallpaper group No. [24]

Z2 1, 4, 5, 13, 14, 15
ðZ2Þ2 3, 8, 12, 16, 17
ðZ2Þ3 7, 9, 10, 11
ðZ2Þ4 2, 6
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then its projection into H0
GS can be “factorized” as

ÛjGS¼⊗ND
i¼1U

ðiÞþOðe−r=ξÞ for somedi-dimensionalmatrix
UðiÞ acting only on the degeneracy localized at the region
RðiÞ. In other words, degeneracy localization passes the
locality structure from the full Hilbert space ontoH0

GS. The
discussed intuition about sym-SRE phases can then be
summarized by the following physical assumption: A
bosonic sym-SRE phase exhibits degeneracy localization.
We now use this assumption to prove the C2 rotation no

go with G ¼ SOð3Þ. Recall that a (projective) representa-
tion of SO(3) is classified by ½ω�r ∈ Z2 ¼ f1;−1g, which
encodes the phase factor for the commutator of two
orthogonal π rotations at site r, say X̂rẐr ¼ ½ω�rẐrX̂r,
where X̂, Ẑ are π rotations about x̂, ẑ. Let the C2-invariant
point be the origin. Clearly, the no-go condition is unmet
whenever ½ω�0 ¼ 1, and, hence, it suffices to prove a no go
with ½ω�0 ¼ −1.
To this end, we modify the Hamiltonian by introducing a

pair of X fluxes at the C2-related points �rX for some
arbitrarily large jrXj [Fig. 2(a)]. An “X flux” is analogous to
a twist in boundary condition, and is microscopically
defined as follows [26]. We choose a line segment γ

connecting �rX, and for each local term ĥ ¼ P
jÔ

j
LÔ

j
R

in the Hamiltonian intersecting γ, where Ôj
L and Ôj

R are,
respectively, localized to the left and right of γ, we replace it
by ĥ0 ≡P

jÔ
j
LðX̂Ôj

RX̂
†Þ to obtain Ĥ0. Note that while the

flux insertion points �rX are fixed and correspond to
defects in the system, the choice of γ is arbitrary, and one
can deform γ → γ0 by applying the gauge transformationQ

r∈A X̂r in the region A enclosed by γ0 − γ. Also, the
orientation of γ is immaterial as X is an order-two
symmetry.
Though the two fluxes are C2 related, the choice of

the defect line γ naively spoils the C2 symmetry. However,
the change γ → C2ðγÞ can be removed by a gauge trans-
formation [Fig. 2(b)]. Consequentially, Ĥ0 is symmetric
under a twisted-C2 operation: Ĉ2

0 ¼ ðQr∈A X̂rÞĈ2, where
∂A ¼ γ − C2ðγÞ. In addition, Ẑ≡Q

r Ẑr remains a sym-
metry of Ĥ0. Computing the commutation relation between
the two symmetries, one finds

Ĉ2
0ẐĈ2

0−1Ẑ−1 ¼
Y

r∈A
X̂rẐrX̂

−1
r Ẑ−1

r ¼
Y

r∈A
½ω�r ¼ ½ω�0; ð1Þ

where in the last equality we used the fact that A is C2

symmetric, and by symmetry ½ω�r ¼ ½ω�−r. Since both Ẑ
and Ĉ2

0 are symmetries of Ĥ0, they leave the ground
space H0

GS invariant. We can therefore project Eq. (1) into
H0

GS, and obtain the corresponding relation Ĉ2
0jGSẐjGS ¼

½ω�0ẐjGSĈ2
0jGS.

When ½ω�0 ¼ −1, there is (at least) a twofold degeneracy
that we will now show is impossible in a sym-SRE phase,
provided the degeneracy localization assumption holds. If
the system was sym-SRE, degeneracy localization implied

ẐjGS ¼ ẐjðþÞ
GS ⊗ Ẑjð−ÞGS , where � denotes the fluxes at �rX.

In addition, as C2 exchanges the two fluxes, the local
degeneracies satisfy dþ ¼ d−, and without loss of general-
ity we can choose a basis in which C0

2jGS is simply
ðĈ2

0jGSÞjαþα−i ¼ jα−αþi, where α� denotes the indepen-
dent degenerate states “trapped” at �rX. In this basis, the

commutation relation reads Ĉ2
0jGSẐjGSĈ2

0j†GS ¼ Ẑjð−ÞGS ⊗
ẐjðþÞ

GS ¼ −ẐjðþÞ
GS ⊗ Ẑjð−ÞGS . A solution to this requires Ẑjð−ÞGS ¼

νẐjðþÞ
GS for some ν ∈ Uð1Þ satisfying −ν ¼ ν, leading to a

contradiction. Hence the claim.
In closing, we remark that our no gos are circumvented if

the system becomes LRE. An example is discussed in
Sec. IV of the Supplemental Material [20].
Discussion and outlook.—In conclusion, we have con-

jectured that all LSM-like theorems for quantum magnets,
where microscopic degrees of freedom forbid symmetric
short-range entangled phases, can be understood intuitively
as topological obstructions to smoothly deforming the
underlying lattice into a trivial one. We proved the con-
jecture in 2D for quantum magnets that are either spin-
rotation invariant, or possess on-site unitary finite-Abelian
symmetries.
Our 2D arguments, in fact, cover all 80 layer groups,

which are symmetries of 2D lattices embedded in three
dimensions (see Sec. V of the Supplemental Material [20]
for more details). They also extend to some genuinely 3D
lattices—in particular, the three no gos remain true, where
mirror lines and Cm rotation-invariant points in two
dimensions become planes and lines in three dimensions.
Such extensions can have immediate implications on spin-
liquid candidates. As an example, we note that both the
Bieberbach and mirror no gos are silent for the pyrochlore
quantum spin ice Yb2Ti2O7 [27], but the C2-rotation no go
remains active if we model the system as a spin-rotation
invariant quantum magnet. Yet, we caution that spin-orbit
coupling is strong in the actual material [27], and so this
idealization is not immediately justified.
A closer inspection, however, reveals that these three no

gos only prove the conjecture for some but not all of the
230 3D space groups (Sec. VI of the Supplemental Material
[20] includes simple examples for which the current set of

(a) (b)

FIG. 2. Flux insertion. (a) A C2 symmetric lattice with a pair
of X fluxes (crosses) inserted at �rX , which leads to “defect
regions” (shaded) near the fluxes. Far away from �rX, flux
insertion amounts to choosing a defect line (dash-dot) and
twisting the local Hamiltonian by X along the line. (b) As
X−1 ¼ X, the system retains a twisted C0

2 symmetry, since the
transformed defect line can be brought back to the original by
applying a gauge transformation on the region A.
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no gos are insufficient.) New techniques will be required,
and we describe some partial results in Sec. VII of the
Supplemental Material [20]. We also note that it would be
most useful if only time-reversal T was required in the no
gos, with the role of projective representation played by the
Kramers degeneracy from T 2 ¼ −1. However, it is not
clear how to extend our flux-insertion proof to this case. In
addition, actual materials are composed of itinerant fer-
mions carrying spin and the quantum-magnet description is
often an approximation. It would be useful to know if our
results extend to this more general case. With a Mott gap, it
naively seems that there should be a sharp notion of
“where” the spins of the electrons lie (at least up to the
lattice equivalence relations), but certain examples suggest
this may not be the case [28,29]. Finally, we note that our
conjecture has interesting connection to the study of
crystalline SPTs [30–36], which we comment on briefly
in Sec. VIII of the Supplemental Material [20].

We thank A. Vishwanath for discussions and col-
laboration on related works. M. Z. is indebted to conver-
sations with D. Else, M. Cheng, M. Freedman, C. Galindo-
Martinez, and M. Hermele. C. M. J.’s research at the KITP
is funded by the Gordon and Betty Moore Foundation’s
EPiQS Initiative through Grant No. GBMF4304. H.W.
acknowledges support from JSPS KAKENHI Grant
No. JP17K17678.

[1] L. Balents, Spin liquids in frustrated magnets, Nature
(London) 464, 199 (2010).

[2] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang,
Topological quantum computation, Bull. Am. Math. Soc.
40, 31 (2003).

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum
computation, Rev. Mod. Phys. 80, 1083 (2008).

[4] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and
G. Saito, Spin Liquid State in an Organic Mott Insulator
with a Triangular Lattice, Phys. Rev. Lett. 91, 107001
(2003).

[5] F. Haldane, Continuum dynamics of the 1-D Heisenberg
antiferromagnet: Identification with the O(3) nonlinear
sigma model, Phys. Lett. 93A, 464 (1983).

[6] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous
Results on Valence-Bond Ground States in Antiferro-
magnets, Phys. Rev. Lett. 59, 799 (1987).

[7] X. Chen, Z.-X. Liu, and X.-G. Wen, Two-dimensional
symmetry-protected topological orders and their protected
gapless edge excitations, Phys. Rev. B 84, 235141 (2011).

[8] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. (N.Y.) 16, 407 (1961).

[9] I. Affleck and E. H. Lieb, A proof of part of Haldane's
conjecture on spin chains, Lett. Math. Phys. 12, 57 (1986).

[10] I. Affleck, Spin gap and symmetry breaking in CuO2 layers
and other antiferromagnets, Phys. Rev. B 37, 5186 (1988).

[11] M. Yamanaka, M. Oshikawa, and I. Affleck, Nonperturba-
tive Approach to Luttinger’s Theorem in One Dimension,
Phys. Rev. Lett. 79, 1110 (1997).

[12] M. Oshikawa, Commensurability, Excitation Gap, and
Topology in Quantum Many-Particle Systems on a Periodic
Lattice, Phys. Rev. Lett. 84, 1535 (2000).

[13] M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions,
Phys. Rev. B 69, 104431 (2004).

[14] X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped
symmetric phases in one-dimensional spin systems, Phys.
Rev. B 83, 035107 (2011).

[15] S. A. Parameswaran, A. M. Turner, D. P. Arovas, and A.
Vishwanath, Topological order and absence of band
insulators at integer filling in non-symmorphic crystals,
Nat. Phys. 9, 299 (2013).

[16] R. Roy, Space group symmetries and low lying excitations
of many-body systems at integer fillings, arXiv:1212.2944.

[17] H. Watanabe, H. C. Po, A. Vishwanath, and M. P. Zaletel,
Filling constraints for spin-orbit coupled insulators in
symmorphic and nonsymmorphic crystals, Proc. Natl. Acad.
Sci. U.S.A. 112, 14551 (2015).

[18] C.-M. Jian and M. Zaletel, Existence of featureless para-
magnets on the square and the honeycomb lattices in 2þ 1

dimensions, Phys. Rev. B 93, 035114 (2016).
[19] P. Kim, H. Lee, S. Jiang, B. Ware, C.-M. Jian, M. Zaletel,

J. H. Han, and Y. Ran, Featureless quantum insulator on the
honeycomb lattice, Phys. Rev. B 94, 064432 (2016).

[20] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.127202, which in-
cludes Refs. [21–23], for further discussions on the details
for computing the lattice homotopy classification, proof of
the conjecture in more general settings, elaboration on the
degeneracy localization assumption and how it is circum-
vented in topologically ordered phases, extensions to
three-dimensional systems, and connection to symmetry-
protected topological phases.

[21] C. Miller, The second homology group of a group; relations
among commutators, Proc. Am. Math. Soc. 3, 588 (1952).

[22] J.-L. Brylinski and R. Brylinski, Universal quantum gates,
Mathematics of Quantum Computation (Chapman and
Hall/CRC, London, 2002).

[23] H. Watanabe, H. C. Po, M. P. Zaletel, and A. Vishwanath,
Filling-Enforced Gaplessness in Band Structures of the 230
Space Groups, Phys. Rev. Lett. 117, 096404 (2016).

[24] International Tables for Crystallography, 5th ed.,
edited by T. Hahn, Space-group symmetry Vol. A (Springer,
New York, 2006).

[25] N. Tarantino and L. Fidkowski, Discrete spin structures and
commuting projector models for two-dimensional fermionic
symmetry-protected topological phases, Phys. Rev. B 94,
115115 (2016).

[26] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,
Symmetry, defects, and gauging of topological Phases,
arXiv:1410.4540.

[27] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents,
Quantum Excitations in Quantum Spin Ice, Phys. Rev. X
1, 021002 (2011).

[28] H. C. Po, H. Watanabe, M. P. Zaletel, and A. Vishwanath,
Filling-enforced quantum band insulators in spin-orbit
coupled crystals, Sci. Adv. 2, e1501782 (2016).

PRL 119, 127202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

22 SEPTEMBER 2017

127202-5

https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.91.107001
https://doi.org/10.1103/PhysRevLett.91.107001
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1007/BF00400304
https://doi.org/10.1103/PhysRevB.37.5186
https://doi.org/10.1103/PhysRevLett.79.1110
https://doi.org/10.1103/PhysRevLett.84.1535
https://doi.org/10.1103/PhysRevB.69.104431
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1038/nphys2600
http://arXiv.org/abs/1212.2944
https://doi.org/10.1073/pnas.1514665112
https://doi.org/10.1073/pnas.1514665112
https://doi.org/10.1103/PhysRevB.93.035114
https://doi.org/10.1103/PhysRevB.94.064432
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.127202
https://doi.org/10.1090/S0002-9939-1952-0049191-5
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevB.94.115115
https://doi.org/10.1103/PhysRevB.94.115115
http://arXiv.org/abs/1410.4540
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1126/sciadv.1501782


[29] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space groups,
Nat. Commun. 8, 50 (2017).

[30] X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski,
Anomalous Symmetry Fractionalization and Surface
Topological Order, Phys. Rev. X 5, 041013 (2015).

[31] C. Wang, C.-H. Lin, and M. Levin, Bulk-Boundary Corre-
spondence for Three-Dimensional Symmetry-Protected
Topological Phases, Phys. Rev. X 6, 021015 (2016).

[32] M. Cheng, M. Zaletel, M. Barkeshli, A. Vishwanath, and
P. Bonderson, Translational Symmetry and Microscopic
Constraints on Symmetry-Enriched Topological Phases:

A View from the Surface, Phys. Rev. X 6, 041068
(2016).

[33] M. Hermele and X. Chen, Flux-Fusion Anomaly Test and
Bosonic Topological Crystalline Insulators, Phys. Rev. X 6,
041006 (2016).

[34] H. Song, S.-J. Huang, L. Fu, and M. Hermele, Topological
Phases Protected by Point Group Symmetry, Phys. Rev. X 7,
011020 (2017).

[35] R. Thorngren and D. V. Else, Gauging spatial symmetries
and the classification of topological crystalline phases,
arXiv:1612.00846.

[36] D. Else (to be published).

PRL 119, 127202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

22 SEPTEMBER 2017

127202-6

https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1103/PhysRevX.6.021015
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevX.6.041006
https://doi.org/10.1103/PhysRevX.6.041006
https://doi.org/10.1103/PhysRevX.7.011020
https://doi.org/10.1103/PhysRevX.7.011020
http://arXiv.org/abs/1612.00846

