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We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene
nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for
uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper
plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly,
the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength.
The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the
system parameters and be used in plasmonic applications.
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Introduction.—Collective self-oscillations of free elec-
tronic charges, known as plasmons [1], have been of
considerable experimental [2] and theoretical [3] interest
for several decades. Plasmon properties depend on the
dimensionality of electronic systems [4,5]. In low dimen-
sions plasmons have been intensively studied in individual
electronic systems in semiconductors [6] and graphene [7].
Recently, an interesting concept has been introduced for
studying the plasmonic response of graphene using gratings
generated by surface acoustic phonons [8,9]. Rapid develop-
ments in graphene plasmonics [10,11] hold a great promise
of new functionalities of plasmons [12], particularly because
of their gate tunability [13–15], long lifetime [16], and the
extreme confinement of the optical field [17–19].
The dimensionality reduction creates a new class of

Coulomb coupled electronic systems [20] in spatially sep-
arated double [21–24] and multilayers [25–27]. These
structures, where the electronic subsystems may have differ-
ent dimensionality, open up new ways for identifying the
influence of the dimensionality mismatch on interaction
phenomena.Thus far, these effects have receivedonly limited
attention [28–30], but the very recent experiments on
Coulomb drag [31] may change the situation drastically.
(For early related theoretical work see Ref. [32].) Hitherto,
the investigations of plasmons in one-dimensional (1D)
and two-dimensional (2D) structures have been restricted
to electronic multilayers with subsystems of equal
dimensionality.
In the present Letter we develop a theory to describe the

dynamical screening in electronic bilayers consisting of
Coulomb coupled subsystems of different dimensionality,
and use it to identify the structure of the plasmon spectrum
in spatially separated metallic armchair graphene nano-
ribbons and monolayers of graphene. Because of the
dimensionality mismatch, the energy dispersions of plas-
mons in the individual structures of graphene cross at
intermediate energies and momenta. We find that the

interlayer Coulomb coupling drastically changes the plas-
mon spectrum inducing a new structure in 1D-2D elec-
tronic systems. These hybrid bilayers are effectively
one-dimensional systems and, hence, do not support the
existence of graphenelike plasmon excitations with a
square-root dispersion in the long wavelength limit.
Instead, the plasmon spectrum consists of lower and upper
split-off branches, which exhibit end points on the
dispersion curves. Therefore, depending on the plasmon
wave number, the structure factor exhibits either a single-
peak or a double-peak behavior as a function of the bosonic
frequency. We identify also a narrow window of plasmon
momenta where the peak with higher energy can itself be
split. The energy splitting of these hybrid plasmons and
their other properties can be controlled by varying the
interlayer spacing, the nanoribbon width, and the carrier
density in graphene. Our choice of the metallic armchair
nanoribbon as the 1D subsystem is motivated by the simple
analytical form of the electron polarization function [33].
We emphasize, however, that dispersion properties of 1D
plasmons in doped zigzag and semiconducting armchair
graphene nanoribbons are essentially the same [34,35].
Therefore, our results have a generic validity and are
applicable to different types of 1D-2D hybrid systems.
The hybrid 1D-2D plasmons can make an essential con-
tribution to the drag resistance; therefore, our results are
directly relevant to the recent Coulomb drag experiments
where a metallic carbon nanotube is coupled to a mono-
layer of graphene [31]. We propose that the dimensionality
mismatch in electronic multilayers can be useful in design-
ing other plasmon applications.
Theoretical model.—The double-layer structure under

consideration here consists of a metallic armchair graphene
nanoribbon (“layer 1”), with a finite width w in the
transverse x direction, and a monolayer of graphene (“layer
2”), which are spatially separated in the z direction with a
spacing d (cf. inset in Fig. 1). The system is nonuniform
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along the x and z directions and we find the plasmon
excitations from the poles of the Fourier transform of the
exact Coulomb propagator in the translationally invariant y
direction as a function of the momentum qy and the energy
ω. In real space r ¼ ðx; y; zÞ the exact Coulomb propagator,
Wijðr1; r2jωÞ, satisfies the integral Dyson equation

Ŵðr1;r2jωÞ ¼ V̂ðr1;r2Þ

þ
Z

V̂ðr1; r̄1ÞΠ̂ðr̄1; r̄2jωÞŴðr̄2;r2jωÞdr̄1dr̄2:

ð1Þ
Here, the propagator Ŵðr1; r2jωÞ, the electron polarization
function Π̂ðr̄1; r̄2jωÞ, and the bare Coulomb interaction,
V̂ðr1; r2Þ, are 2 × 2 matrices with respect to the layer
indices i, j ¼ 1, 2. The layers are assumed sufficiently far
apart so that the interlayer tunneling and the nondiagonal
elements of Π̂ðr̄1; r̄2jωÞ are negligibly small. Within the
random phase approximation the diagonal elements in the
ith layer are

Πiiðr1; r2jωÞ ¼
X
μ;ν

Ψi
ν
�ðr2ÞΨi

νðr1ÞΨi
μðr2ÞΨi

μ
�ðr1Þ

×
fðEi

μÞ − fðEi
νÞ

Ei
μ − Ei

ν þ ωþ i0
; ð2Þ

and can be calculated using the electron wave functions
ΨμðrÞ and the energy spectra Eμ in graphene nanoribbons
and monolayers of graphene [35]. Here, fðEμÞ is the Fermi
function. The indices μ, ν are combined quantum numbers,
which describe the electron motion in the respective layer.
In armchair graphene nanoribbons μ ¼ ðn; s; kyÞ, where

the transverse quantization subband index is an integer,
n ¼ 0;�1;…, and the chirality index s ¼ �1. The con-
served momentum ky corresponds to the translational
invariant y direction. We assume that the Fermi energy
and temperature are smaller than the transverse quantiza-
tion energy, EF, T ≪ πvgr=w. Here units kB ¼ ℏ ¼ 1 are
used, and vgr the velocity of graphene. For carrier
densities in nanoribbons, corresponding to the areal density
ngr ¼ 3 × 1011 cm−2, and for w ¼ 12 nm, we have
πvgr=w ≈ 1996 K and EF ¼ πngrwvgr=4 ≈ 215.6 K. In this
regime experimentally relevant structures are metallic
armchair graphene nanoribbons with the single-particle
energy spectrum, EsðkyÞ ¼ svgrky, of 1D Dirac fermions.
In monolayer graphene the quantum number μ ¼ ðs;pÞ

describes the 2D electron spinor states in the (x, y) plane
with the in-plane momentum p and the single-particle
Dirac spectrum EsðpÞ ¼ svgrp. We neglect electronic
transitions due to intervalley scattering (for large values
of the transferred momentum interlayer Coulomb interac-
tion is small) and take into account the valley index via the
degeneracy factor in the definition of the Fermi momentum
and energy.
Solution of the Dyson equation.—We rewrite the Dyson

equation (1) for the Fourier components of the exact
interactions in the y direction W̄ijðx1; x2jqyjωÞ, which
are also weighted by the carrier densities in the z direction
to take into account the carrier localization in the respective
layers. Next we average W̄ijðx1; x2jqyjωÞ over the trans-
verse coordinates of electrons, and introduce the nota-
tion ~W11ðqyjωÞ ¼

R w=2
−w=2

R w=2
−w=2 W̄11ðx1; x2jqyjωÞdx1dx2=w2

and ~W21ðqx; qyjωÞ ¼
R
∞
−∞

~W21ðx1jqyjωÞeiqxx1dx1 with
~W21ðx1jqyjωÞ¼

R w=2
−w=2W̄21ðx1;x2jqyjωÞdx2=w. Note that in

contrast to the bare Coulomb interaction V̄ijðx1 − x2jqyÞ,
the exact interactions W̄ijðx1; x2jqyjωÞ depend on the
coordinates x1, x2 separately. Then, the system of equations
for the components ~W11ðqyjωÞ and ~W21ðqx; qyjωÞ is
represented as

~W11ðqyjωÞ ¼ ~V1D
11 ðqyÞ þ ~V1D

11 ðqyÞΠ1D
11 ðqy;ωÞ ~W11ðqyjωÞ

þ 1

L

X
qx

IðqxÞV2D
12 ðqÞΠ2D

22 ðq;ωÞ ~W21ðqx; qyjωÞ;

ð3aÞ
~W21ðqx; qyjωÞ ¼ IðqxÞV2D

21 ðqÞ
þ IðqxÞV2D

21 ðqÞΠ1D
11 ðqy;ωÞ ~W11ðqyjωÞ

þ V2D
22 ðqÞΠ2D

22 ðq;ωÞ ~W21ðqx; qyjωÞ;
ð3bÞ
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FIG. 1. Plasmon dispersion in Coulomb coupled metallic
armchair graphene nanoribbons and monolayer graphene. The
green (d ¼ 16 nm) and blue (d ¼ 2 nm) solid curves show
the energy dispersions of the upper and lower branches of the
hybrid plasmons for two representative spacings. The dotted
and dashed curves show the uncoupled 1D and 2D plasmon
dispersions as a guide to the eye. The horizontal thin line at
ω ≈ 1.32EF corresponds to the energy at which the 2D plasmon
enters into the 2D interband EHC of graphene. The other two
thin lines show the boundaries of the 2D inter and interband
EHC in monolayer graphene. The nanoribbon width is w ¼
12 nm and the electron areal density in graphene monolayer
ngr ¼ 3 × 1011 cm−2 Inset: schematics of a dimensionally mis-
matched graphene nanostructure.
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with the form factor IðqxÞ ¼ 2 sinðqxw=2Þ=qxw. We intro-
duce also the averaged bare interaction in graphene nano-
ribbons as ~V1D

11 ðqyÞ ¼
R w=2
−w=2

R w=2
−w=2 dx1dx2V11ðx1 − x2jqyÞ,

where V11ðx1 − x2jqyÞ ¼ 2e2=ϵeffK0ðqyjx1 − x2jÞ with ϵeff
the effective low frequency dielectric function of the
background dielectric medium, and K0 is the modified
Bessel function of the second kind. The functions
V2D
ij ðqÞ ¼ 2πe2e−ji−jjqd=ϵeffq are the 2D Fourier transforms

of the bare intra- and interlayer Coulomb interaction

with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
.

Then, we find the solution of the Dyson equation as

~W11ðqyjωÞ ¼
~V1D
eff ðqyjωÞ

ε1D-2Dðqy;ωÞ
;

~W21ðxjqyjωÞ ¼
~V1D-2D
eff ðxjqyjωÞ
ε1D-2Dðqy;ωÞ

: ð4Þ

Here the central quantity is the dynamical screening
function of the hybrid 1D-2D electronic system

ε1D-2Dðqy;ωÞ ¼ ε1Dðqy;ωÞ −Q1D-2Dðqy;ωÞΠ1D
11 ðqy;ωÞ;

ð5Þ
where

Q1D-2Dðqy;ωÞ ¼
1

L

X
qx

I2ðqxÞV2D
12 ðqÞ2Π2D

22 ðq;ωÞ
ε2Dðq;ωÞ

: ð6Þ

The 1D and 2D interlayer dynamical screening functions
(the Lindhard polarization functions) in graphene nano-
ribbons [33–35] and monolayers of graphene [36–39]
are, respectively, ε1Dðqy;ωÞ¼1− ~V1D

11 ðqyÞΠ1D
11 ðqy;ωÞ and

ε2Dðq;ωÞ ¼ 1 − V2D
22 ðqÞΠ2D

22 ðq;ωÞ. In Eq. (4) we define
the effective intraribbon and interlayer interactions, res-
pectively, as ~V1D

eff ðqyjωÞ ¼ ~V1D
11 ðqyÞ þQ1D-2Dðqy;ωÞ and

~V1D−2D
eff ðxjqyjωÞ ¼ 1=L

P
qx
e−iqxxIðqxÞV2D

12 ðqÞ=ε2Dðq; ωÞ.
Notice that the effective interactions have no poles as a
function of qy. In the limit of vanishing interlayer inter-
action V2D

12 ðqÞ → 0 for large values of d and/or x, the
electronic subsystems in nanoribbon and monolayer gra-
phene become independent. In addition to the 1D momen-
tum qy, the 2D momentum q becomes a well-defined
conserved quantum number in monolayer graphene
because of the recovered 2D translational invariance.
Then, the full screening function is represented as a simple
product of its 1D and 2D parts. The poles of the 2D Fourier
transformed propagator ~W21ðqx; qyjωÞ as a function of q
are given byℜε2Dðq;ωÞ ¼ 0 and determine the square-root
spectrum of plasmons in an individual graphene sheet. In
this limit, Eq. (5) is reduced to the 1D screening function of
an individual graphene nanoribbon and determines the
dispersion of 1D plasmons as a function of qy. With a
decrease of x and d the 1D-2D coupling is recovered and

the hybrid 1D-2D modes govern the plasmon spectrum as a
function of qy. Further our discussion is restricted only to
these new hybrid plasmon modes.
Thus, Eqs. (4)–(6) allow us to describe the dynamical

screening phenomena and to obtain the plasmon structure
in Coulomb coupled electronic bilayers, consisting of
subsystems with different dimensionality. These formulas
are general and allow us to describe hybrid structures with a
different type of graphene and conventional electronic
subsystems as well as mixed structures. Microscopic details
of the subsystems determine the functional forms of the 1D
and 2D polarization functions and the form factor
IðqxÞ [40].
Plasmon dispersions.—Dispersive properties of hybrid

plasmons in 1D-2D electronic bilayers are determined by
the zeroes of the real part of the dynamical screening
function [41]

ℜε1D-2Dðqy;ωÞ ¼ 0: ð7Þ

To obtain a solution to this equation we note that the
summand in Eq. (6) has different analytical properties in
the high-energy, ω > ω2DðqyÞ, and the low-energy,
ω < ω2DðqyÞ, regions where ω2DðqyÞ is the 2D plasmon
energy in graphene with qx ¼ 0 (cf. the dashed curve in
Fig. 1). In the ω > ω2DðqyÞ region ε2Dðq;ωÞ always has a
zero as a function of qx, corresponding to the plasmon
energy in an uncoupled graphene sheet. Therefore, in this
regimewe calculateQ1D-2Dðqy;ωÞ taking its principal value
numerically.
In the low-energy regime, ω < ω2DðqyÞ, the integrand in

Eq. (6) is not singular and one can calculate the energy
dispersion of the lower branch of the hybrid plasmon
numerically from Eqs. (5)–(7). Analytically, in the long
wavelength limit qyw ≪ 1 and qyd ≪ 1 we search for the
lower plasmon branch in the part of the spectrum close to
the plasmon energy in individual graphene nanoribbons,
ω ≈ ω1DðqyÞ. As far as ω1DðqyÞ ≪ ω2DðqyÞ < ω2DðqÞ, we
use the static approximation for Π2Dðq;ωÞ ≈ Π2Dðq; 0Þ.
Assuming that d ≪ w, we find the energy dispersion of the
lower plasmon in the long wavelength limit as

ω−ðqyÞ ≈ 2

�
2αgr

d
w

�
1=2

vgrqy; ð8Þ

while in structures with d ≫ w it is given by

ω−ðqyÞ ≈ 2

�
αgr
π

ln

�
2
d
w

��
1=2

vgrqy: ð9Þ

The energy of the lower hybrid plasmon is thus linear in qy
and its velocity in the limit of d ≪ w is larger by a factor offfiffiffi
2

p
than the velocity of the out-of-phase plasmon in double

graphene nanoribbons in the same limit [33].
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Numerical calculations.—In Fig. 1 we plot the plasmon
spectrum in the hybrid 1D-2D electronic system, which we
calculate assuming that ε2Dðq;ωÞ ¼ ℜε2Dðq;ωÞ. In
Eqs. (5)–(6) we use the explicit T ¼ 0 expressions of
the 1D and 2D polarization functions, respectively, from
Refs. [33,37]. As seen in the figure, the bare plasmon
dispersions of the 1D (dotted line) and 2D (dashed line)
cross around qy ¼ 0.4kF. The interlayer Coulomb coupling
splits this crossing and induces a new plasmon structure of
the upper and lower plasmon modes in the coupled 1D-2D
system. This hybrid system is effectively one-dimensional:
the plasmon spectrum does not support the

ffiffiffi
q

p
mode,

characteristic for 2D, in the long wavelength limit. The
upper branch of the hybrid plasmon has an end point of the
dispersion curve whose position varies with the system
parameters within the intermediate values of qy and ω, but
remains on the boundary ω ¼ ω2DðqyÞ, separating the high-
energy and the low-energy regions. The upper plasmon
shows also a singular behavior at the critical energy ωc, at
which the individual 2D plasmon enters into the 2D
electron-hole continuum (EHC). This is due to the singu-
larity of the 2D dielectric function [the second derivative of
ε2D½ω2DðqÞ� has a gap at ω2DðqÞ ¼ ωc], an intrinsic feature
of the plasmon dispersion in 2D graphene monolayers.
Note that the dispersion curve of the upper plasmon crosses
that of the 1D plasmon; i.e., the interlayer interaction
effectively vanishes at certain values of ω and qy. A similar
situation takes place in an individual graphene sheet
because the polarizability Π2D

22 ðq;ωÞ vanishes at certain
intermediate values of ω and q [39].
Using the full complex 2D dielectric function

ε2Dðq;ωÞ ¼ ℜε2Dðq;ωÞ þ iℑε2Dðq;ωÞ modifies markedly
the plasmon spectrum only in the region of ω > ωc. The
lower plasmon branch acquires an endpoint on the
dispersion curve, lying on the boundary ω ¼ ω2DðqyÞ at
ω ≈ 1.43EF and ω ≈ 1.32EF, respectively, for d ¼ 2 and
16 nm. The energy of the upper plasmon branch becomes
about 10% lower at large values of qy for d ¼ 2 nm, while
for d ¼ 16 nm the changes are almost invisible.
In the large qy limit, the upper plasmon branch behaves

as a nanoribbonlike mode, whose energy tends to the
energy of the 1D plasmon in uncoupled graphene nano-
ribbons with an increasing interlayer spacing d. The energy
of the lower branch of the hybrid plasmon shows a similar
trend, but in the opposite low qy limit.

The interlayer Coulomb coupling modifies strongly also
the dissipative properties of the 1D-2D plasmons. Notice
hybrid plasmons propagate in the translationally invariant y
direction and the broadening of plasmon peaks describes
the plasmon damping in this direction. In Fig. 2 we plot the
imaginary part of the dynamical screening function,
ℑε1D-2D½ω�ðqyÞ�, for the upper and lower modes, which
are calculated using the complex ε2Dðq;ωÞ. In contrast with
the behavior of the individual 1D and 2D plasmons, both
the upper and lower hybrid plasmon modes are Landau
damped in the whole ðω; qyÞ plane of the spectrum.
However, for both modes, ℑε1D-2D½ω�ðqyÞ� is sufficiently
small for energies ω < ωc so that the hybrid plasmons
are well defined excitations in this region. For the upper
branch, ℑε1D-2D½ωþðqyÞ� is rather large outside the 2D EHC
of monolayer graphene in the energy region of ω > ωc.
Meanwhile, for the lower branch ℑε1D-2D½ω−ðqyÞ� is rather
small inside the 2D EHC, but for energies ω < ωc. For both
modes the imaginary part shows peaks at energies immedi-
ately above ωc and decreases with an increasing ω,
reflecting the behavior of −ℑε−12Dðq;ωÞ in the 2D graphene
sheet. As seen, ℑε1D-2D½ωþðqyÞ� is essentially smaller in
structures with larger d ¼ 16 nm spacing so that in the limit
of qyd → ∞ the spectrum of the hybrid plasmon recovers
the undamped 1D plasmon in metallic armchair graphene
nanoribbons.
The dispersive and dissipative features of the

1D-2D plasmons discussed above determine the behavior
of the dynamical structure factor, S1D-2Dðqy;ωÞ ¼
−ℑε−11D-2Dðqy;ωÞ. In Fig. 3 we plot S1D-2Dðqy;ωÞ as a
function of ω together with ℜε1D-2Dðqy;ωÞ for four typical
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FIG. 2. The imaginary part of the screening function in 1D-2D
electronic systems along the upper (left) and the lower (right)
hybrid plasmon branches. The solid and dashed curves corre-
spond to interlayer spacing of d ¼ 2 and 16 nm. The values of
other parameters are the same as in Fig. 1.
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values of the momentum qy. It is seen that for qy ¼ 0.3 the
structure factor shows a single peak at ω ≈ 0.52EF,
corresponding to the lower plasmon and a small feature
at ω≃ ωc that reflects the peaked behavior of−ℑε−12Dðq;ωÞ.
For qy ≈ 0.43kF, in addition to the lower plasmon peak, the
structure factor exhibits two more peaks, corresponding to
the upper plasmon branch immediately below and above
the critical energy ωc. The latter is strongly damped and
suppressed so the peak structure is asymmetric. Note that
there is only a small window of momenta around qy ≈
0.43kF where the upper branch of the 1D-2D plasmon
exhibits a double-peak structure. From the comparison of
the structure factor behavior for qy ≈ 0.51kF and
qy ≈ 0.96kF, we see that the lower plasmon peak becomes
suppressed at larger momenta while the upper plasmon
peak becomes stronger but broader in structures
with d ¼ 2 nm.
In conclusion, we have developed a theory that describes

the dynamical screening in electronic bilayers with a
dimensionality mismatch. A new plasmon structure has
been found in the hybrid 1D-2D systems of graphene
nanoribbons and monolayers of graphene, whose properties
can be controlled by varying the interlayer spacing, the
nanoribbon width, and the carrier density. The results
indicate the potential of hybrid graphene multilayers with
a dimensionality mismatch for plasmonic applications.
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