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Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest
as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of
clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain
threshold. We perform numerical simulations of flow through porous media and compare our predictions to
experimental results, recovering with excellent agreement shape and power-law distribution of pressure
loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore,
we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical
values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand
production in oil wells and breakthrough in filtration.
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Erosion and deposition give rise to a plurality of
applications and phenomena: Filtration in industrial proc-
esses, internal erosion in dams [1], and braided rivers [2], to
name but a few. Some of these phenomena have grave
economical and monetary impact such as the performance
reduction in water treatment filters or the sand production
in oil wells [3]. While it is well known that changes in flow
conditions or internal structure can lead to erosion in filters
[4–7], only recently Bianchi et al. [8] conducted experi-
ments to study the appearance of erosive bursts in porous
media, finding that the resulting jumps in pressure loss
follow a power-law distribution. In these experiments
suspensions of deionized water carrying 50 μm quartz
particles are pushed with a peristaltic pump through a
filter made of 1 mm glass beads measuring simultaneously
pressure drop, flux, and particle concentration.
Similar behavior has been observed in the past in

different experiments. Fluctuations in the permeability
were found in acidic flow experiments through porous
rocks, where dissolution and precipitation alter the porous
structure [9–11]. Sahimi et al. [12] also measured such
fluctuations in fractured carbonate oil reservoirs. They
proposed that either dissolution or hydrodynamic
forces are responsible for the increase in permeability.
Nevertheless, the internal mechanism responsible for the
power-law distribution of erosive bursts is still unclear.
Here, we address this issue by analyzing the erosive process
at pore scale employing advanced numerical techniques.
Numerical models have been already used extensively to

study erosion and deposition in porous media. For instance,
Mahadevan et al. [13] introduced a model that shows how
flow induces channelization in porous media. Kudrolli
et al. [14] found that the porous medium evolves into a
configuration that minimizes erosion. Bonelli et al. [15]
introduced a model to describe suffusion.

Yamamoto et al. [16] solved numerically the convection-
diffusion equation using the lattice Boltzmann Method
(LBM) simulating the flow of soot suspended in exhaust
gas. Soot particles in contact with the filters’ surface are
deposited with a given probability PD. Using an x-ray
tomography (CT) scan of a diesel particulate filter they
reproduced the deposition of soot and the increased
pressure drop inside the filter. However, to the best of
our knowledge, there are no models able to describe erosive
bursts in porous media.
Based on the work of Yamamoto et al. [16], we proposed

an extended model [17] that allowed us to study erosion
due to shear force, showing that static channels can form
but no reopening of clogged channels was observed. This
model was not able to reproduce the erosive bursts found in
Bianchi’s experiments [8], and therefore, another mecha-
nism for erosion must be acting. We introduce here an
additional erosive mechanism where deposited matter is
eroded if a critical pressure gradient is exceeded, which can
lead to the unclogging of jammed channels. This is
motivated by the fact that high hydraulic pressure leads
to fluidization in granular matter, which after a decom-
paction phase can develop fingerlike channels [18]. In this
Letter, we show that this new ingredient is able to
reproduce erosive bursts found in deep filtration, including
its power-law behavior. Furthermore we study the con-
ditions under which erosive bursts occur and find phases
where bursts are predominant and others where they are not
observed. This happens whether the flow through the
porous medium features a constant flux or a constant
pressure loss. The evolution of the porous structure,
consisting of the filter and the deposited matter, can be
compared to the evolution of braided rivers [2], while some
channels clog or change shape, others will unclog through
erosion.
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In our model, the flow is governed by the Navier-Stokes
equations and the suspended particles are described by their
particle concentration following the convection-diffusion
equation [17]:

∂C
∂t þ∇ · ðCu⃗Þ ¼ ∇ · ðD∇CÞ; ð1Þ

where C is the particle concentration, u⃗ is the fluid velocity,
and D is the diffusion coefficient. Here we will consider D
to be equal to the kinematic viscosity and hence the
Schmidt number is Sc ¼ ν=D ¼ 1. While that may be
much lower than for common fluids, we have found that the
qualitative behavior does not change for higher Schmidt
numbers (Sc ≈ 100, see Supplemental Material [19]). To
solve the Navier-Stokes and the convection-diffusion equa-
tions we employ a lattice Boltzmann method [16,17,20,21].
The fluid solver yields flow properties, such as the velocity
u⃗ or hydraulic pressure P on lattice sites.
Shear erosion occurs when the shear stress exerted by the

fluid overcomes the cohesive strength of solid matter [15].
Our previous model [17] only incorporated such a shear
dependent erosion and was motivated by the work of
Yamamoto et al. [16]. Shear erosion is proportional to
the difference between the wall shear stress τw and a
threshold for shear erosion τc [22]: _m ¼ −κerðτw − τcÞ,
where _m is the eroded mass per area and time, and the
threshold τc and the coefficient κer depend on the specific
composition of the solid matter and the fluid. We introduce
here another erosive mechanism besides the wall shear
stress. This erosion occurs when the hydraulic pressure
gradient acting on deposited matter exceeds a certain
threshold jPa − Pbj=Lab > σc, where Pa and Pb are the
hydraulic pressure acting on deposited matter between two
opposite points a and b, Lab is the distance between a and
b, and σc is a material specific positive constant. The
hydraulic pressure Pa ¼

P
α;βπ

αβnαnβ is calculated from
the momentum flux tensor παβ ¼ Pδαβ þ ρuαuβ − σαβ [23]
and the unitary vector n⃗ normal to the solid surface at point
a (details are shown in the Supplemental Material [19]).
While the erosion due to wall shear stress is a continuous

process grinding away matter at the surface, the hydraulic
pressure induces erosion that suddenly removes large
pieces of deposits from the static matrix. We model this
detachment by dissolving the deposited matter layer by
layer into the fluid flowing through the porous matrix while
locally increasing the concentration of suspended particles.
After the erosion of the first layer the pressure on the new
surface is similar to the pressure before, but the distance is
shorter, thus fulfilling automatically for the next layer the
condition for erosion. The erosion continues through the
deposited material until a channel opens and the hydraulic
pressure equalizes. Solid matter is represented by a mass
index (0 ≤ m ≤ 1) on the same lattice which we use to
identify the interface between solid and fluid. The

hydraulic pressure is measured for all interface cells and
the maximum gradient determined. When the criterion for
erosion is fulfilled deposited matter in the cells is dissolved.
For channel flow the wall shear stress is proportional to

the flux, hence, increasing the flux or decreasing the wall
shear threshold has the same effect. We write the critical
wall shear threshold in dimensionless units by dividing by a
characteristic shear, the same can be done for the threshold
of the hydraulic pressure induced erosion σc:

T c ¼
τcl�

ρνu�
; F c ¼

σcl�

ρu�2
; ð2Þ

where l� is a characteristic length, ρ the fluid density, ν the
kinematic viscosity, and u� the characteristic speed. The
characteristic speed is flux divided by the cross area Ω
of the porous system, the density ρ and the porosity
ϵ: u� ¼ Φ=Ωρϵ.
To test our model, we perform numerical simulations,

with a setup similar to filtration experiments [5,7,8]. The
filter consists of a porous matrix of nonerodible matter (see
Fig. 1). This porous matrix is static and presents an upper
bound for the permeability. The simulation box is a
rectangular lattice of size 100 × 100 × 140 (xyz), where
inlet (z < 20) and outlet (z > 120) are kept free from solid
matter and the length of the porous matrix is L ¼ 100. The
porous matrix is built from randomly placed spheres with
diameter l� ¼ 14.1 lattice cells. They can overlap and are
placed in the simulation box until a porosity of ϵ ∼ 0.5 is
reached. The outlet (z ¼ 1.4L) has open boundary con-
ditions and transverse directions (x; y ¼ f0; Lg) have
periodic boundaries. Just as in filtration experiments, a
fluid carrying particles flows through the filter and some
particles can deposit onto the solid matrix. We impose
either a constant flux or constant pressure loss through the

FIG. 1. Setup for simulations imposing constant flux in the z
direction; grey is the nonerodible initial porous matrix, brown is
deposited matter, and other colors indicate the magnitude of the
flow velocity ju⃗j of the fluid, where blue denotes low, and red
high speeds.
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porous medium and at the inlet the particle concentration is
kept constant.
First we study the evolution of the filter when a constant

flux with Reynolds number Re ¼ u�l�=ν ¼ 0.17 is
imposed. Each simulation starts with a clean porous matrix
which does not contain erodible matter. The fluid carrying
suspended particles (constant concentration at the inlet
C0 ¼ 10% of total volume) is then pushed through the
porous structure and deposition of particles leads to a
decrease in permeability. While the permeability decreases,
the macroscopic fluid pressure measured between the in-
and outlet (P ¼ Pin − Pout) of the porous structure keeps
increasing. The hydraulic pressure gradient can increase
even more on a local scale, which also increases the force
acting on deposited material. When this force is high
enough deposited matter detaches suddenly, i.e., much
faster than deposition and shear erosion alter the surface.
We indeed find that the macroscopic pressure during an
erosive burst jumps and its decay (see inset in Fig. 2) is very
similar to the one reported in experiments [8]. Furthermore
we find that the size distribution of these jumps follows a
power law with an exponent αsim ¼ 2.0� 0.1 (see Fig. 2),
which agrees within error bars with the exponent found by
experiments αexp ¼ 1.88� 0.09 ([8]). This slope does not
depend on the inlet flow speed and hence the Reynolds
number (see Supplemental Material [19]). Thus our sim-
ulation adequately describes the erosive bursts occurring in
deep filtration experiments, and the erosive mechanism due
to hydraulic pressure is apparently responsible for the
experimentally observed bursts.
Bianchi et al. [8] found that there is a minimum

concentration required for erosive bursts to appear. This
is also confirmed by our simulations. In Fig. 3, we observe
that the bursts start to appear for concentrations around

C ∼ 1%. Furthermore, in the experiments the presence of
three different phases was reported: for low concentration,
erosive bursts do not appear and no clogging is present; for
intermediate particle concentrations, there are erosive
bursts but no subsequent clogging; and for high concen-
trations, erosive bursts occur and the porous medium
eventually clogs. We find the same qualitative behavior
as in the experiments (see Fig. 3), where the constant flux is
only imposed up to a maximum pressure loss (see
Supplemental Material [19] for details). Furthermore, we
also found that the frequency of the bursts increases linearly
with the concentration (see Supplemental Material [19]).
Additionally we found that depending on T c jumps

occur only within a certain range of F c (see Fig. 4). When
F c is below this range there is no clogging of pores and
hence no erosive bursts. For high values of F c there is no
erosion due to hydraulic pressure. Thus we find three
phases separated by two critical values of F c.
We also studied deposition and erosion for constant

pressure loss P ¼ Pin − Pout imposed between the in- and
outlet, instead of constant flux. Here we define the
characteristic speed as u� ¼ K0P=ρνLϵ, where K0 is the
initial permeability and L is the length of the porous matrix.
As opposed to the case of constant flux, in this case the
porous medium can completely clog and there are no
fluctuations in the pressure loss. However, sudden erosive
events can still occur, because the local pressure difference
can vary when matter is deposited. We set the threshold for
shear erosion T c such that the porous medium would
completely clog, if channels could not reopen. For very
high threshold F c the local pressure difference is never
high enough to lead to reopening (see Fig. 5), and for very
low F c any matter obstructing the flow will immediately
detach. Here, we found again that for an intermediate range
of F c there is an intermittent regime where sudden erosive
bursts are observed and the permeability fluctuates
strongly. We found that the transition from the open phase

FIG. 2. Histograms of the size of pressure jumps of exper-
imental [8] and simulation data. The jumps are rescaled by the
average jump height (ΔP̂i ¼ ΔPi=ΔP̄). The slope of the histo-
gram indicated by the blue line was found to be −2.0� 0.1. The
inset shows an example of a typical jump in the experimental (red
dashed line) and the simulation data (green line), the x and y axes
are dimensionless pressure (P̂ ¼ P=ΔP) and time (t̂ ¼ t=Δt, Δt
is the duration of the jump).

FIG. 3. The average relative jump in permeability hΔKi=K0,
where K0 is the initial permeability. In the first regime (I) there
are no jumps in permeability, in the second (II) there are jumps,
and in the third (III) there are jumps but the porous medium
eventually clogs.
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to the clogged phase looks similar for different T c, and
when we rescale F c as follows:

F c →
F c

T c
∝

1

P
σc
τc

; ð3Þ

the measured permeabilities collapse (see Fig. 5), showing
that the transition is only dependent on the ratio of the

thresholds of the two erosive mechanisms. Sampaio et al.
[24] developed an analogous model for an electric system,
where a network of fuse-antifuse devices under a constant
potential drop exhibit different phases: metallic, intermit-
tent, and insulating. Hence even though the operating
conditions differ widely from imposing constant flux, here
also three distinct regimes are found where only the middle
range features conductive jumps and hence bursts in
current, as can be seen in the inset of Fig. 5.
Our study shows that it is the reopening of channels

induced by hydraulic pressure that leads to the erosive
bursts found in deep filtration experiments. We found that
depending on material strength and flow conditions erosive
bursts only occur for a certain range of thresholds for
pressure induced erosion. We were able to reproduce the
power-law behavior of pressure loss jumps found exper-
imentally when erosive bursts occur in porous media.
Furthermore, we found that the power law found by
Bianchi et al. [8] is universal in the sense that the exponent
does not depend on the Reynolds number nor on fluid
properties. For both constant flux and constant pressure
loss we found three phases. The first phase appears where
the strength of deposited matter against pressure induced
erosion is very weak and any deposit obstructing flow is
reentrained immediately. For intermediate strength some
pressure has to build up to erode deposits, in this phase we
can observe erosive bursts. In a third phase the strength
against pressure induced erosion is too high for it to be a
relevant mechanism for erosion and shear erosion is
predominant. Thus we can conclude that it is not sufficient
to only consider shear induced erosion in the study of
erosion in porous media, but one has also to consider the
reopening of channels induced by hydraulic pressure to be
able to reproduce the behavior of erosive bursts and jumps
in permeability in porous media.
Our findings help to better understand the erosive

mechanisms in deep filtration, sudden sand production
in oil wells, and the evolution of erosion in dams and dikes.
A future endeavor would be to construct experiments that
allow us to identify the strength of actual materials against
shear and hydraulic pressure induced erosion and to
characterize porous media for erosive behavior.
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