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We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological
(SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be
used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase
remains stable only within a parametric time scale controlled by the driving frequency, beyond which its
topological features break down. To overcome this issue, we consider an alternate route based upon realizing
an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that
disorder, leading to many-body localization, prevents runaway heating and enables the observation of
coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the
equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum
signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain ofRydberg-
dressed atoms and show that protected edge modes are observable on realistic experimental time scales.
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The discovery of topological insulators—materials
which are insulating in their interior but can conduct on
their surface—has led to a multitude of advances at the
interface of condensed matter physics and materials engi-
neering [1–5]. At their core, such insulators are charac-
terized by the existence of nontrivial topology in their
underlying single-particle electronic band structure [6,7].
Generalizing our understanding of topological phases to the
presence of strong many-body interactions represents one
of the central questions in modern physics. Some of the
simplest generalizations that have emerged along this
direction are symmetry-protected topological (SPT) phases
[8–10], which represent the minimal extension of topo-
logical band insulators to include many-body correlations.
Featuring short-range entanglement, SPT phases do not
exhibit anyonic excitations in their bulk, but nevertheless
possess protected edge modes on their surface; as a result,
they represent a particularly fertile ground for studying the
interplay between symmetry, topology, and interactions.
While indirect signatures of certain ground state SPT

phases have been observed in the solid state [11–13],
directly probing the quantum coherence of their underlying
edge modes represents an outstanding experimental chal-
lenge. In principle, cold-atom quantum simulations could
offer a powerful additional tool set—including locally
resolved measurements and interferometric protocols—for
probing the robustness of edge modes and systematically
exploring their stability to specific perturbations [14–18].
Moreover, such platforms could also enable the controlled
storage and transmission of quantum information [19–21].
Despite these advantages, and owing to the complexity of

typical model SPT Hamiltonians, it remains difficult to
engineer and stabilize SPT phases in cold-atom systems.
One approach to this challenge is to emulate the complex

interactions giving rise to static, equilibrium SPT (ESPT)
phases by periodically driving a simpler Hamiltonian at
frequencies much larger than its intrinsic energy scales [22].
In addition to this approach, seminal results on classifying
driven (Floquet) phases [23–28] have also shown that there
exist Floquet SPT (FSPT) phases which are inherently
dynamical and have no static analog. Interestingly, such a
FSPT phase can be realized at driving frequencies that are
comparable to the energy scales of the bare Hamiltonian.
The power of periodic driving for engineering topological

phases has been extensively explored in cold-atom [29–31],

FIG. 1. A 1D array of atoms is trapped in an optical lattice or
tweezer array. Ising interactions for pseudospin states j↓i, j↑i are
generated by optically coupling j↑i to Rydberg state jRi (solid blue
arrows). Random fields hi are generated by a spatially varying
Raman coupling (dotted purple arrows) between j↓i and j↑i. While
emulating the ESPT phase requires a dimerized chain with Ising
couplings λfðtÞ of dynamically switchable sign, the FSPT phase is
simulated simply by alternating between two Hamiltonians consist-
ing of Ising interactions (H1) and a disordered transverse field (H2).
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solid-state [32–34], and photonic [35,36] systems. For cold
atoms, where Floquet control has so far been applied only to
single-particle band structures [29–31,37–39], recent
advances in optically controlling interactions [40–47] offer
new opportunities for accessing strongly correlated phases
[48–51]. Notably, coherent spin-spin interactionswith a range
of several microns [42,43,46,47] can be introduced via
Rydberg dressing [42–44,46,47,52–55]. However, prospects
formodulating suchdressing light in order toFloquet engineer
many-body Hamiltonians has remained largely unexplored.
This owes, in part, to the difficulty of generating quantum

coherent order in an interacting Floquet system which will
typically absorb energy from the driving field, eventually
heating to a featureless infinite temperature state [56,57].
This difficulty is further exacerbated for isolated atomic
systems, where the lack of coupling to an external bath
renders the system incapable of releasing excess energy and
entropy [58].A fruitful strategy for combating suchheating is
to harnessmany-body localization (MBL) [23,59–62],which
has been predicted to stabilize quantum coherent behavior
without the need for stringent cooling or adiabatic prepara-
tion of low temperature many-body states [19–21,63].
In this Letter, we propose to exploit periodically driven

interactions to realize two distinct non-equilibrium MBL
SPT phases in a one-dimensional array of cold atoms
(Fig. 1). Driving the interaction term of a transverse-field
Ising model (TFIM) enables the emulation of an ESPT
phase whose edge modes are protected by an emergent
Z2 × Z2 symmetry [22]. This phase remains stable only
within a parametric time scale controlled by the driving
frequency, beyond which its topological features break
down. Alternatively, toggling between Hamiltonians with
solely Ising interactions or purely transverse fields yields an
intrinsically dynamical FSPT phase which has no equilib-
rium analog. We explore the stability of both phases to
long-range interactions and provide a detailed experimental
blueprint using Rydberg-dressed atoms.
ESPT phase.—Inspired by pioneering work on emulating

static phases in driven systems [22,32,33,64–68], we first
consider the realization of a many-body localized version of
theHaldane phase [69]. This SPTphase can be protected by a
discrete dihedral symmetry,Z2 × Z2, and exhibits boundary
modes that are odd under the symmetry; these edge modes
behave as decoupled spin-1=2 degrees of freedom that are
robust to any perturbation which preserves the symmetry.
We begin by examining the robustness of the edge modes

in a periodically driven and dimerized spin chain (Fig. 1):

H0ðtÞ ¼
XN
i¼1

hiσxi þ
XN−1

i¼1

fðtÞλiσziσziþ1 þ Vxσ
x
i σ

x
iþ1; ð1Þ

where N represents an even number of spins, σαi are the
Pauli operators on site i, λ2kþ1 ¼ λ1, λ2k ¼ λ2 (with λ1,
λ2 > 0), and fðtÞ ¼ ω cosðωtÞ is the driving function [70].
For Vx ¼ 0, the model is noninteracting and exhibits edge

dynamics which never decohere [22]. Here, we first verify
that the SPT phase remains stable under the addition of
short-range interactions Vx ≠ 0 that preserve the dihedral
symmetry (generated by products of σxi on the even and odd
sites). We then assess the effects of more generic, longer
range, interactions.
In the limit of large driving frequencies ω, the dynamics

are described by an effective time-independent Floquet
Hamiltonian, HF, which can be constructed perturbatively
in orders of 1=ω using a Magnus expansion [71–73].
At leading order, we obtain the time-averaged Floquet
Hamiltonian [74]

Hð0Þ
F ¼

XN
i¼1

hiaðλ1; λ2Þσxi −
XN−1

i¼2

hibðλ1; λ2Þσzi−1σxi σziþ1

þ VxJ0ð2λ2Þðσx1σx2 þ σxN−1σ
x
NÞ

þ Vx

XN−2

i¼2

½cðλiþ1Þσxi σxiþ1 þ dðλiþ1Þσzi−1σyi σyiþ1σ
z
iþ2�;

ð2Þ
where J0ðxÞ is the Bessel function of the first kind,
aðλ1;λ2Þ¼ 1

2
½J0(2ðλ1−λ2Þ)þJ0(2ðλ1þλ2Þ)�, bðλ1; λ2Þ ¼

J0(2ðλ1 − λ2Þ) − aðλ1; λ2Þ, cðλÞ ¼ 1
2
½1þ J0ð4λÞ�, and

dðλÞ ¼ 1 − cðλÞ. We have absorbed a factor of
(J0ð2λ1Þ=aðλ1; λ2Þ) in the definitions of h1 and hN [75].
A few remarks are in order. First, the periodic driving,

fðtÞ, effectively generates multispin interactions [Eq. (2)]

[22]. Second, while Hð0Þ
F exhibits a Z2 × Z2 symmetry, the

parent Hamiltonian [Eq. (1)] possesses only a smaller Z2

symmetry group, indicating that the “emergent” dihedral

symmetry of Hð0Þ
F must be broken at higher orders in the

Magnus expansion [74]. Finally, the Vx ¼ 0 limit of Eq. (2)
describes a pair of decoupled 1D p-wave superconductors
[76] and harbors two simple limits: for aðλ1; λ2Þ >
bðλ1; λ2Þ, the ground state is a trivial insulator, while for
aðλ1; λ2Þ < bðλ1; λ2Þ, the ground state is a bosonic SPT
insulator. The key signature of this latter ESPT phase is the
existence of protected modes localized around the boun-
dary of the system. Crucially, the λ1, λ2 dimerization of the
Ising interaction enables us to arbitrarily tune the correla-
tion length of the edge mode [inset of Fig. 2(a)], leading to
coherent dynamics with significantly higher fidelity than
those of the undimerized TFIM [22].
To characterize the edge coherence, we introduce the

trace fidelity FαðtÞ ¼ 1
ZTr½e−βHðtÞΣαðtÞΣαð0Þ� as a function

of time, where Z is the partition function, β ¼ 1=kBT, and
Σα are the zero correlation length edge operators Σx¼σx1σ

z
2,

Σy ¼ σy1σ
z
2, and Σz ¼ σz1. This autocorrelation function at

infinite temperature will serve as a proxy for the coherence
time. Furthermore, since we are interested in coherent
MBL-protected dynamics at finite energy densities, from
hereon we add strong disorder to the system via random on-
site fields hi [77].
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As alluded to above, there are two mechanisms of edge
spin decoherence introduced by interactions: (1) scattering
with thermal excitations and (2) breaking of the Z2 × Z2

symmetry. While the first is ameliorated via MBL
[Fig. 2(a)], the second is intrinsic to the stroboscopic
approach—the ESPT phase is stable only up to a finite
parametric time scale, T�

2;symm ∼ ðh2=ωÞ−1, beyond which
the protecting symmetry is broken.
The first effect is reminiscent of similar discussions in

the static context [19–21], where disorder can localize
thermal bulk excitations and suppress scattering. Since the
edge operators are odd under the Z2 × Z2 symmetry, their
dressed MBL counterparts will not appear in the effective
“l-bit”Hamiltonian [60,61] and dephasing occurs solely via
coupling to the other edge mode [21] on a time scale that is
exponential in system size, T�

2;MBL ∼ eOðNÞ[78], as depicted
in Fig. 2(b). Thus, so long as the effective dynamics are

described by Hð0Þ
F , one finds that even in the interacting,

periodically driven system, disorder can lead to a revival of
the coherence time [Fig. 2(a)].
ThisMBL enhancement of edge coherence is cut off by the

fact that the first order Magnus correction, Hð1Þ
F , breaks the

Z2 × Z2 symmetry. For time scales t > T�
2;symm, even though

bulk excitations remain many-body localized, there is no
symmetry protecting the edge operators, which can then
scatter locally. Thus, for a finite size system, decoherence in
the presence of interactions that preserve the dihedral sym-
metry occurs on a time scale T�

2∼minðT�
2;MBL;T

�
2;symmÞ∼

min(eOðNÞ;Oðω=h2Þ) as illustrated in Fig. 2(b).
The addition of a more generic symmetry-breaking

interaction term, such as Vy
P

iσ
y
i σ

y
iþ1 or a long-range

power-law tail, breaks the Z2 × Z2 symmetry at lowest
order in the Magnus expansion. In this case, there is no
parametric time scale where we expect ESPT dynamics
[i.e., T�

2;symm ∼Oð1Þ], and the edge modes rapidly decohere
via local scattering [Fig. 2(b)].
FSPT phase.—To obtain edge modes with coherence

that persists to arbitrary times and is robust to long-range
interactions, we now turn to the realization of an intrinsi-
cally Floquet SPT phase. We engineer a FSPT phase
protected by both Z2 symmetry and periodic driving which
cannot exist in equilibrium [24–28]. Consider the strobo-
scopic Hamiltonian

HðtÞ ¼
(
H1 ¼

P
i≠j

J
jRi−Rjjp σ

z
iσ

z
j if 0 ≤ t < T=2

H2 ¼
P

N
i¼1 hiσ

x
i if T=2 ≤ t < T;

ð3Þ

where Ri ¼ i is the position of the ith spin and hi ∈ ½0;W�.
The protecting symmetries are the product of σx on all sites
(Z2) and discrete translations in time (Z). The unitary
evolution underHðtÞ is given byUðtÞ¼T exp½−iR T

0 HðtÞdt�
and the Floquet operator by U ¼ UðTÞ. Building upon
previous studies [23,65,79,80], we expect to observe the
FSPT phase at ðJT=2Þ ≈ ðπ=2Þ [74].
Since the disorder strength is limited to W ≲ 1=T by the

periodic structure of the binary drive [74], the system
cannot be localized for arbitrarily strong interactions. By
computing the level-statistics ratio hri [81] as a function of
the power-law exponent p [Fig. 3(a)], we observe a clear
MBL-delocalization phase transition at pc ≈ 3.5 [82]. For
the remainder of the text, we set p ¼ 4 as a computationally
tractable model within the MBL phase.
To probe the nature of edge coherence in the FSPT

phase, we again compute the trace fidelity Fα ¼
1
2N
Tr½σαi ðtÞσαi ð0Þ�. As depicted in the inset of Fig. 3(a),

and similar to the ESPT phase, the edge spin exhibits a
significantly longer coherence time than bulk spins.
However, a crucial difference emerges in the scaling with
N. For long-range interactions, the coherence time of the
ESPT phase scales independently of the system size,
T�
2 ∼Oð1Þ, whereas the FSPT exhibits a quartic scaling

T�
2 ∼OðN4Þ (owing to the 1=R4 power-law interactions

between the two edge modes), as shown in the inset of
Fig. 3(a).
To further distinguish between the topological features of

the ESPT and FSPT phases, we introduce a novel micro-
motion-based entanglement spectrum signature of the latter
[26]. In particular, for an eigenstate jψi of the Floquet
operator U, we compute the entanglement spectrum,
fηiðtÞg, associated with the half-chain cut of jψðtÞi ¼
UðtÞjψi for 0 ≤ t ≤ T. By Schmidt decomposing jψðtÞi ¼P

2N=2

i¼1 ηiðtÞjleftiðtÞi ⊗ jrightiðtÞi, we obtain fηiðtÞg across
the two sets, fjleftiðtÞig and fjrightiðtÞig, which span the
Hilbert spaces of the left and right halves of the chain.
Unlike in equilibrium, where a single snapshot of the

(a) (b)

FIG. 2. ESPT phase—(a) FαðtÞ for N ¼ 10 spins with
ω¼100, Vx ¼ 0.05, Vy ¼ 0, λ1 ¼ 1.54 and λ2 ¼ 0.69, yielding
bðλ1; λ2Þ=aðλ1; λ2Þ ∼ 10. Almost overlapping dotted lines
represent the clean undisordered case (black and blue for Fz

and Fx, respectively). Solid lines correspond to strong on-site
disorder, with thick black and blue lines for Fz and Fx in the
dimerized case and thin solid yellow and red lines for Fz and Fx

in the undimerized case. (inset) Ratio bð1; λ2Þ=að1; λ2Þ in the
dimerized (solid blue) and the undimerized (dotted red) models.
The SPT phase corresponds to b=a > 1 (delimited by the dotted
black line). (b) T�

2 as a function of frequency and system size [74].
As ω is increased for Vx ¼ 0.05 (circles), T�

2 saturates consistent
with being bounded by T�

2 ∼min (OðωÞ; eOðNÞ). Adding generic
interactions, Vy

P
iσ

y
i σ

y
iþ1 with Vy ¼ 0.2 (squares), leads to a

breakdown of the edge coherence for all parameters.
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entanglement spectrum shows the existence of topological
edge modes, we find that, at any given time t, the spectrum
is trivial and there is no signature of FSPTorder [Fig. 3(b)].
However, by following the micromotion evolution of the
spectrum over a single Floquet period, we can robustly
identify the topological signature of the FSPT phase [26].
To see this, we note that the entanglement spectrum is

gapped at t ¼ 0 and t ¼ T which allows us to associate an
SPT invariant to each nontrivial band—namely, the Z2

symmetry charge of the corresponding Schmidt states,
hleftiðtÞj

Q
jσ

x
j jleftiðtÞi ¼ �1. There exists a band crossing

during the micromotion [Fig. 3(b)], pointing to the fact that
the charges of each band are flipping during a Floquet
period. This difference between the initial and final Z2

charges cannot be altered without closing the entanglement
gap, suggesting that the band crossing is, in fact, a robust
feature of FSPT order. Indeed, this nontrivial behavior is
absent in the paramagnetic and spin glass phases [Fig. 3(b)].
Finally, an additional entanglement-based feature of the

FPST phase’s non-trivial protected edge modes is captured
by the spatial dependence of two-spin mutual information.
We observe a log 2 entropy in each edge spin, 2 log 2
mutual information shared between the two edges, and

approximately zero mutual information shared between
bulk spins (inset of Fig. 3b). In combination, this points to
the fact that the two edge modes are well localized to a
single site and behave like an EPR pair.
Experimental realization.—Both the ESPT and FSPT

Hamiltonians can be implemented in a chain of Rydberg-
dressed alkali-metal atoms [43,44,46,49,50] trapped in a
1D optical lattice or tweezer array [83,84] (Fig. 1). The spin
degree of freedom is formed by two ground hyperfine
states, with a resonant Raman coupling of spatially varying
Rabi frequency hi simulating the on-site transverse fields.
Random fields can be formed by optical speckle disorder or
with a spatial light modulator.
Strong spin-spin interactions are introduced by coupling

state j↑i to a Rydberg state jRi with an off-resonant laser
field of Rabi frequency Ω and detuning Δ > Ω. The result
is an effective (dressed) Ising interaction [43,55]

HI ¼ −
Ω4

8Δ3

1

1þ jRi − Rjj6=R6
c
σziσ

z
j; ð4Þ

where the interaction range Rc ¼ ð−C6=ΔÞ1=6 depends on
the van der Waals coefficient C6 of the Rydberg-Rydberg
interaction and is typically on the few-micron scale. At
fixed lattice spacing a1, the ratio of nearest to next-nearest-
neighbor couplings is set by Rc (Fig. 1).
While the Rydberg dressing is subject to dissipation

from the finite lifetime Γ−1 of the Rydberg state [43,44], the
interaction-to-decay ratio can be large [49,50] in a 1D
system. At fixed Rabi frequency Ω, the ratio of the Ising
coupling J to the lifetime γ ¼ ðΩ2=4Δ2ÞΓ of the Rydberg-
dressed state is limited to J=γ ¼ ðΩ2=2ΔΓÞ < ðΩ=ΓÞ. This
limit is set by the condition Ω2=Δ2 ≪ 1 that the Rydberg-
state population within the radius Rc ∼ a1 be small, so that
the perturbative result of Eq. (4) holds. At realistic laser
power on the 6S1=2 → nP3=2 transitions (with n≳ 40) in
cesium [85], parameters ðΩ;ΓÞ ≈ 2π × ð4; 0.002Þ MHz
allow for large coupling-to-decay ratios J=γ ≲ 103.
To observe the FSPT phase, we envision initializing the

system in a product state with high energy density and
letting it undergo unitary time evolution. After each Floquet
period T, one measures the spin-spin autocorrelation
function hσαðnTÞσαð0Þi for both an edge and bulk spin.
Numerics [Fig. 3(c)] for N ¼ 10 atoms indicate that a time
t ∼ 102=J suffices to observe a significant difference
between the bulk- and edge-spin fidelities. The difference
can be observed over an even shorter time scale t ∼ 30=J
[Fig. 3(d)] by adding a decohering interaction term
Vx

P
iσ

x
i σ

x
iþ1 to H1 in Eq. (3). Experimentally, Vx can be

introduced by simultaneously dressing both states j↓i and
j↑i [50] to generate flip-flop processes ∝ σþi σ

−
iþ1.

To experimentally verify the distinct advantages of
the intrinsically Floquet SPT phase, our scheme can be
modified to emulate the ESPT phase for comparison.
Realizing the ESPT Hamiltonian requires alternating

(a) (b)

(c) (d)

FIG. 3. FSPT phase—(a) The hri ratio as a function of the
power law exponent p for a chain with periodic boundary
conditions. The hi’s are sampled from the uniform distribution
[0.1, 0.9] and T ¼ π (in units of J ¼ 1). There is a MBL-
delocalization phase transition around pc ≈ 3.5. (inset) T�

2 as a
function of N, where the edge coherence is fit to ∼N4. (b) The
entanglement spectrum micromotion for N ¼ 12. The parameters
(p, T, J,W) are: (4, π, 1, 1) for the SPT; (1, π, 1, 1) for the thermal
behavior; (4, π, 0.05, 0.8) for the paramagnet; p ¼ 4, T ¼ π,
J ¼ 0.5, h ∈ ½0.5; 1� for the spin glass. (inset) Mutual information
Iði; jÞ ¼ Si þ Sj − Sij (where S is the von Neumann entropy)
within the SPT phase: Ið1; jÞ (red circles) and Ið6; jÞ (blue
squares) [74]. (c) FyðtÞ and FzðtÞ for the edge and the bulk in a
system of N ¼ 10 spins for the model in Eq. (3). The bulk curves
are almost overlapping. (d) Same as in (c), but with an additional
term, Vx

P
iσ

x
i σ

x
iþ1 (Vx ¼ 0.3) added to H1.
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stroboscopically between ferromagnetic and antiferromag-
netic Ising interactions by simultaneously changing the
signs of the detuning Δ and of the van der Waals coefficient
C6. While a conceptually simple approach is to switch
between two different laser fields detuned by Δ2 ≈ −Δ1

from two different Rydberg states jR2i; jR1i, a more
practical approach may be to dynamically control the sign
of C6 with an electric field [86]. We detail concrete level
schemes for an implementation in cesium in Ref. [74].
Our proposal raises the tantalizing possibility of observ-

ing coherent quantum dynamics at high temperatures in
strongly interacting disordered systems [19–21]. We have
studied two different routes towards SPT phases in driven,
disordered spin chains: by engineering effective three-spin
interactions (ESPT) or by intrinsically dynamical quantized
pumping of spin (FSPT). In both cases, decoherence can be
caused by breaking the protecting symmetry group.
However, as the ESPT relies on a symmetry that is only
approximately realized in the high frequency limit, it
survives only up to a finite time scale for short-range
interactions, and is fragile to generic interactions. By
contrast, the FSPT survives at arbitrary times and is robust
to long-range interactions.
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