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The pair potential for helium is computed with accuracy improved by an order of magnitude relative to
the best previous determination. For the well region, its uncertainties are now below 1 millikelvin. The main
improvement is due to the use of explicitly correlated wave functions at the nonrelativistic Born-
Oppenheimer (BO) level of theory. The diagonal BO and the relativistic corrections are obtained from
large full configuration interaction calculations. Nonadiabatic perturbation theory is used to predict the
properties of the halo state of the helium dimer. Its binding energy and the average value of the interatomic
distance are found to be 138.9(5) neVand 47.13(8) Å. The binding energy agrees with its first experimental
determination of 151.9(13.3) neV [Zeller et al., Proc. Natl. Acad. Sci. U.S.A. 113, 14651 (2016)].
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Helium is expected to become an important medium in
determining thermodynamic metrology standards and the
future International System of Units (SI) [1,2]. Several
elements of such standards will be established by ab initio
quantum mechanical calculations [3–7]. An important
theory input is the helium pair potential. Its knowledge
is required to account for the imperfection of helium
gas and the necessary extrapolations to zero pressure [2].
The more accurate this potential is, the smaller will be the
uncertainties of the resulting standards.
There are other reasons of interest in the helium pair

potential. The dimer composed of 4He atoms, 4He2, has a
single very weakly bound vibrational state—an example of
a quantum halo state—where atoms move mainly in the
classically forbidden tunneling region of the configuration
space [8]. This state was the subject of several experimental
investigations [9–14]. We present here the development
of a new potential with uncertainties reduced by an order
of magnitude compared to the previous most accurate
determination [15]. This potential and the nonadiabatic
perturbation theory [16], accounting for the coupling of
the electronic and nuclear motion, are used to obtain
an accurate theoretical prediction of the properties of the
halo state.
The potential of Ref. [15] contained the Born-

Oppenheimer (BO) component from Ref. [17]. Its uncer-
tainty, amounting to several millikelvin (mK) in the well
region, was due to the slow convergence of a part of the
wave function expanded in terms of orbital products. Since
it is impossible to converge the orbital expansion suffi-
ciently well [18], we now follow Refs. [19,20] and expand
the BO wave function using the four-electron explicitly
correlated Gaussian (ECG) basis. Several improvements to
the approach of Refs. [19,20] that have been made recently
[21–23] enabled us to perform highly accurate ECG
calculations for 46 values of the interatomic distance R.

In Ref. [15], the BO potential of Ref. [17] was combined
with the adiabatic (diagonal BO), relativistic, and quantum
electrodynamics (QED) contributions, as well as with an
appropriate retardation correction [24]. Its uncertainties
were almost entirely determined by the uncertainties of the
BO component. With the much improved BO potential
computed in the present work, the accuracy of the adiabatic
and relativistic components from Ref. [15] became insuf-
ficient. Therefore, we decided to recompute these compo-
nents using different methodologies, providing higher
accuracy and better error control.
Recently, the wave function of 4He2 has been measured

via the Coulomb explosion technique [14], which enabled
the first experimental determination of its very small
binding energy (151.9� 13.3 neV). The most precise
calculation for this state was performed [15] in the adiabatic
approximation giving the binding energy D0 ¼ 136.6�
2.9 neV when nuclear masses are used to solve the vibra-
tional problem (as required by the mathematical derivation
of the adiabatic approximation) or 139.2� 2.9 neV when
the atomic masses are used (as suggested by physical
intuition). The average interatomic separations hRi
obtained with these masses were 47.50� 0.46 Å and
47.09� 0.46 Å, respectively, in a minor disagreement with
the experimental value of 52� 4 Å [13]. To resolve this
ambiguity, in the present work we have used the non-
adiabatic perturbation theory [16] to account for the
coupling of the electronic and nuclear motion. This requires
the calculation of an effective R-dependent vibrational
mass and of a nonadiabatic correction to the potential
[16]. We have developed methods to compute these
quantities for many-electron diatomics and report the
results in this Letter. To our knowledge, such nonadiabatic
calculations have not been performed earlier for systems
with more than two electrons.
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The ECG wave function employed by us has the form

Ψ ¼ AΞð1þ {̂Þ
�
c0ϕ0 þ

XK
k¼1

ckϕkðr1; r2; r3; r4Þ
�
; ð1Þ

where A is the antisymmetrizer, Ξ is the product of two-
electron singlet spin functions, {̂ is the inversion through the
center of He2, and ϕk, k > 0, are the ECG basis functions:

ϕkðr1; r2; r3; r4Þ ¼
Y4
i¼1

e−αkijri−Xkij2
Y4
i>j¼1

e−βkijjri−rjj2 : ð2Þ

The linear parameters ck and the nonlinear ones αki, βkij,
and Xki ¼ ð0; 0; XkiÞ are optimized by minimizing the
expectation value of the electronic Hamiltonian Ĥel. The
term c0ϕ0 is included to approximate the product of
spinless helium atom wave functions. When performing
the nonlinear optimization of Ψ, we used the following
fixed form of ϕ0:

ϕ0 ¼ S
XL
l¼1

blϕA
αlβlγl

ðr1; r2ÞϕB
α0lβ

0
lγ

0
l
ðr3; r4Þ; ð3Þ

where S ¼ ð1þ {̂P13P24Þð1þ P12Þð1þ P34Þ with Pij per-
muting the coordinates of the ith and jth electron, and

ϕX
αlβlγl

ðr1; r2Þ ¼ e−αljr1−Xj2e−βljr2−Xj2e−γljr1−r2j2 ð4Þ
with X ¼ ð0; 0; 0Þ for X ¼ A and X ¼ ð0; 0; RÞ for X ¼ B.
The parameters of ϕ0 were optimized by minimizing the
expectation value of the sum ĤA þ ĤB of the atomic
Hamiltonians [23]. We have set L ¼ 6788, obtaining the
energy of two noninteracting helium atoms within 0.16 mK
of the exact value of Ref. [25]. After all nonlinear
parameters in ϕk, k > 0, were optimized, the final energy
was computed with ϕ0 represented by the product of
helium wave functions expanded in terms of 337 sym-
metrized ECGs of the form of Eq. (4). The energy of two
helium atoms computed with this form of ϕ0 differs from
the exact one by 0.02 mK.
The calculations were first performed for the same 16

internuclear distances as in Ref. [17], ranging from 1 to

9 bohr. For each distance,K ¼ 2400, 3394, 4800, and 6788
term expansions of the form of Eq. (1) were optimized.
Attempts to fit analytic functions to the computed inter-
action energies have shown that the assumed grid density is
insufficient to obtain a fit to within the new, decreased
uncertainty. Therefore, we performed calculations at addi-
tional 30 values of R located at 0.33 and 0.67 of the
distances between the existing 16 points (with R rounded to
0.01 bohr). The nonlinear parameters for the additional
values of R were obtained from the wave function of the
nearest R from the original set, employing the scaling
procedure proposed in Ref. [26].
The interaction energy EðKÞ was obtained by subtracting

the exact atomic energies [25] from the calculated dimer
energy, so EðKÞ is a rigorous variational upper bound.
To extrapolate to the complete basis set (CBS) limit,
we employed the empirical observation that the ratio
ηK ¼ ΔK=

ffiffi
2

p =ΔK with ΔK ¼ EðKÞ − EðK= ffiffiffi
2

p Þ is approx-
imately independent of K. Disregarding a few outliers, we
found that the values of ηK are between 1.32 and 3. We have
chosen η ¼ 1.32, to determine the extrapolated interaction
energy Eextrp ¼ Eð6788Þ þ Δ6788=ðη − 1Þ. This choice,
resulting in the largest magnitude of the CBS correction,
compensates for the incompleteness of the minimization for
K ¼ 6788. The difference of energies extrapolated with
η ¼ 3 and η ¼ 1.32 was taken as the uncertainty of Eextrp.
The CBS-extrapolated values of the BO interaction

energies and their uncertainties are listed in Table I for a
subset of distances. The data for other distances are given in
the Supplemental Material [27]. The BO energies reported
in Ref. [5] are presented for comparison. At all 16 distances
where energies from both sets are available, the uncertain-
ties overlap, so both sets of results are consistent. However,
the present uncertainties are tighter by about an order of
magnitude (from 8 to 23 times for R < 7 bohr and from 2.5
to 6 times for other distances), except at 5.6 bohr.
In Ref. [5], the adiabatic correction EadðRÞ was com-

puted via numerical differentiation of the electronic wave
function with respect to nuclear positions. In our work, we
employed the method proposed by Pachucki and Komasa

TABLE I. Components of the 4He dimer potential in kelvin (1 hartree ¼ 315775.13 K) with R in bohr (1 bohr ¼ 0.529177 Å)
and their sum V ¼ VBO þ Vad þ Vrel þ VQED. Results for other values of R and the components of Vrel are listed in the
Supplemental Material [27].

R VBO VBO, Ref. [5] Vad Vrel VQED V V, Ref. [5] Vret

3.0 3767.7341(38) 3767.681(71) 1.3847(15) −0.2125ð17Þ 0.09376(22) 3769.000(4) 3768.94(7) 0.00045
4.0 292.58201(86) 292.570(15) 0.10585(17) 0.03322(21) 0.00891(5) 292.7300(9) 292.719(15) 0.00025
5.0 −0.47114ð36Þ −0.4754ð65Þ −0.006992ð10Þ 0.024012(25) −0.00106ð3Þ −0.4552ð4Þ −0.460ð7Þ 0.00015
5.6 −11.00072ð20Þ −11.0006ð2Þ −0.008905ð10Þ 0.015403(15) −0.001351ð23Þ −10.99557ð20Þ −10.9955ð5Þ 0.00012
6.0 −9.68079ð16Þ −9.6819ð23Þ −0.007170ð4Þ 0.011438(11) −0.00120ð4Þ −9.67772ð16Þ −9.6788ð23Þ 0.00010
7.0 −4.62260ð10Þ −4.6225ð6Þ −0.0033168ð24Þ 0.005768(4) −0.00074ð3Þ −4.62089ð11Þ −4.6208ð6Þ 0.00007
9.0 −0.98971ð6Þ −0.98984ð15Þ −0.0007328ð8Þ 0.0019306(6) −0.000316ð29Þ −0.98883ð7Þ −0.9890ð2Þ 0.00004
12.0 −0.16592ð2Þ −0.0001261ð1Þ 0.0005768(1) −0.000133ð26Þ −0.16560ð3Þa −0.16560ð3Þ 0.00002
aComputed with the same value of VBO as in Ref. [5] (given in the third column).
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[16]. In a space-fixed reference frame, EadðRÞ is expressed
as [16]

EadðRÞ ¼
ℏ2

mn
h∇RΨj∇RΨi þ

1

4mn
hΨjP2jΨi; ð5Þ

where R is the vector joining the nuclei, mn is the nuclear
mass, and P is the total electronic momentum operator. To
avoid the cumbersome differentiation of Ψ with respect to
R, we obtained ∇RΨ by solving the equation [16]

ðĤel − EBOÞ∇RΨ ¼ −ð∇RĤelÞΨ: ð6Þ
The adiabatic correction to the potential is defined as
VadðRÞ ¼ EadðRÞ − 2EA

ad, where E
A
ad is the atomic adiabatic

correction [28]. When EadðRÞ and EA
ad are computed with

the same basis, VadðRÞ vanishes at large R in accord with its
known asymptotic expansion [29].
The solution∇RΨ of Eq. (6)was obtained by representing

∇RΨ and Ψ as full configuration interaction (FCI) expan-
sions and solving linear equations for the CI coefficients. By
comparing with accurate ECG results, available at small R
[5], we found that the orbital basis sets dXZ from Ref. [5]
lead to fast convergence provided that they are augmented
by one set of p functions obtained by taking the nuclear
gradient of the contracted, 19-term s orbital already present
in all dXZ bases of Ref. [5]. The dXZ bases augmented in
this way will be referred to as the dXZcp bases.
VadðRÞwas calculated using the dXZcp bases up toX ¼ 6

for 55 values ofR, the same 46 values as in the case of theBO
potential and, additionally, for 9 larger distances. The largest
FCI calculations employed the wave functions with ∼4 ×
108 determinants (atD2h symmetry). All necessary integrals
and Hartree-Fock orbitals were computed using the DALTON

2.0 package [30], while the adiabatic corrections were
obtained using a FCI code written for the purpose of this
work. The values of VadðRÞ were extrapolated to the CBS
limit assuming the X−3 decay of the error. As our recom-
mendedvalues ofVadðRÞ, we took theCBS limit basedon the
d5Zcp and d6Zcp results with uncertainties estimated as the
absolute values of the difference between the extrapolated
and the d6Zcp result. Combining the new numerical
approach and the increased size of basis sets (in Ref. [5],
bases up toX ¼ 4were used), we reduced the uncertainty of
the adiabatic corrections by an order of magnitude.
The relativistic component VrelðRÞ of the potential VðRÞ

was computed for 55 values ofR using the samemethod as in
Ref. [5], except that we employed basis sets with larger
cardinal numbers X and added p functions to improve the
wave function in the vicinity of nuclei. Specifically, we
started with the modified dXZ basis sets of Ref. [5] (con-
taining 21 uncontracted s functions) and augmented them by
n ≤ 5 “tight” p functions with exponents larger than those
already present in the original dXZ basis. The bases obtained
in this way will be denoted as dXZþ np. The exponents of
these tight p functions are given in the Supplemental
Material [27].

To calculate expectation values of the relativistic oper-
ators, we used a composite approach. Themain contribution
(over 90%) was calculated at the coupled cluster CCSD(T)
level of theory [31] using large basis sets (up to d8Zþ 5p),
whereas the remaining contribution was included applying
an additive FCI correction computed with smaller bases (up
to d6Zþ 5p). The CCSD(T) calculations were performed
using the DALTON 2013 package [32], whereas at the FCI
level we used a program written for this work. For each
internuclear distance, the relativistic potentials were
obtained as the difference between the dimer and atomic
expectation values, the latter calculated with the dimer basis
to remove the basis-set superposition error.
To perform CBS extrapolations, we employed the con-

vergence laws established in Ref. [5], i.e., we assumed
that upon increasing the cardinal number X, the error of the
Breit correction decays as X−3=2 and the errors of the
remaining corrections as X−1. The fixed-n extrapolation
from bases dðX − 1ÞZþ np and dXZþ np will be denoted
as dðX − 1; XÞZþ np. We found that the effect of the
increased flexibility of the new dXZþ np bases on the
relativistic corrections is small, especially for n > 3,
although it improves somewhat the convergence of the
extrapolations. As our recommended CCSD(T) component
of the relativistic corrections we took the dð7; 8ÞZþ 5p
extrapolation with uncertainties estimated as the absolute
value of the difference between the dð7; 8ÞZþ 5p and
dð6; 7ÞZþ 5p extrapolations. Similarly, at the FCI level,
we used the dð5; 6ÞZþ 5p extrapolation with uncertainties
estimated as the absolute value of the difference between the
dð5; 6ÞZþ 5p and dð4; 5ÞZþ 5p extrapolations. To check
the basis set convergence of the FCI correction, we also
carried out FCI calculations for three distances, R ¼ 2, 5.6,
and 12 bohr, using the d7Zþ 2p basis set, which consists of
512 functions (and generates ∼2 × 109 D2h-adapted deter-
minants). The results of the FCI extrapolations dð6; 7ÞZþ
2p for R ¼ 5.6 and 12 bohr (where the FCI corrections are
most relevant) are contained within the proposed error bars,
which shows that our uncertainty estimates are reliable.
The calculated one- and two-electron Darwin terms

together with the ECG results for the Araki-Sucher term
VASðRÞ fromRef. [5]were employed to compute the leading
(third-order in the fine structure constant α) QED correction
VQEDðRÞ using the formulas from Ref. [5]. Using Eq. (19)
from Ref. [5], we also estimated the α4 QED correction and
found that it is at least 5 times smaller than the uncertainties
of VðRÞ. Therefore, this correction was neglected.
The uncertainties of the components of VrelðRÞ and of

VQEDðRÞ, as well as uncertainties of all components of
VðRÞ, were added in squares. Compared to the results from
Ref. [5], the uncertainties ofVrelðRÞwere reduced by a factor
of 1.4–17 depending on R. The uncertainties of VQEDðRÞ
remain unchanged as they are dominated by the uncertainty
of the Araki-Sucher component. Also the retardation cor-
rection, appropriate for the potential including the leading
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QED term [24], is the same as in Ref. [5]. As seen in Table I,
the uncertainties assigned to all calculated post-BO correc-
tions to the interaction potential are comparable or smaller
than the uncertainties of the BO potential.
The computed values of VBOðRÞ, VadðRÞ, VrelðRÞ, and

VQEDðRÞ were fitted to the analytic functions of the form

XM
k¼1

e−akR
XI1
i¼I0

PikRi −
XN1

n¼N0

fnðζRÞ
Cn

Rn ; ð7Þ

where fnðxÞ ¼ 1 − e−xð1þ xþ � � � þ xn=n!Þ is the Tang-
Toennies [33] damping function, ak, Pik, and ζ are
adjustable parameters, and the summation limits [M, I0,
I1, N0, N1] are [3, −1, 2, 6, 16] for VBOðRÞ, [3,0,2,6,10]
for VadðRÞ, [3,0,2,4,8] for VrelðRÞ, and [2,0,2,3,6] for
VQEDðRÞ. The asymptotic constants C8 for VrelðRÞ and
C6 for VQEDðRÞ are not known and were also adjusted. The
remaining constants Cn were fixed and set equal to the
known literature values [5,29,34,35]. To impose the correct
behavior of VBOðRÞ at R ¼ 0, we used the theoretical value
of the beryllium atom energy EBe ¼ −14.667356498 har-
tree [36]. We used the inverse squares of uncertainties σðRÞ
as the weighting factors in the least-squares fitting. The
maximum and average absolute errors of the fit are 0.92σ
and 0.16σ, respectively, for the BO component. Similarly
accurate fits were obtained for the remaining components
of VðRÞ.
In order to estimate the uncertainties of physical quan-

tities calculated with our potential, we developed functions
σXðRÞ representing the uncertainties of the calculated
components such that their exact values can be assumed
to be contained between functions VXðRÞ � σXðRÞ, where
VXðRÞ is the analytic fit of a component X. We found
that the functions σXðRÞ can be represented as σXðRÞ ¼
s0e−a0R þP

n
i¼1 sie

−aiR2

, where n ¼ 3, except for VrelðRÞ
when n ¼ 4. The parameters and the Fortran codes for all
fits can be found in the Supplemental Material [27].
To compute the properties of the bound state of 4He2, we

used the nonadiabatic perturbation theory [16] applied
successfully to the H2 molecule and its isotopologues
[37–41]. In this theory, the energies E and radial wave
functions χðRÞ are obtained by solving the radial equation
of the form

�
−
ℏ2

R2

∂
∂R

R2

2μ∥ðRÞ
∂
∂Rþ JðJþ 1Þℏ2

2μ⊥ðRÞR2
þYðRÞ−E

�
χðRÞ ¼ 0;

ð8Þ

where μ∥ðRÞ and μ⊥ðRÞ are the R-dependent vibrational
and rotational reduced masses

1

2μ∥ðRÞ
¼ 1

mn
þW∥ðRÞ;

1

2μ⊥ðRÞ
¼ 1

mn
þW⊥ðRÞ; ð9Þ

and YðRÞ is the sum of VðRÞ, VretðRÞ, and a nonadiabatic
correction VnaðRÞ. The expressions for the functions
W∥ðRÞ, W⊥ðRÞ, and VnaðRÞ are given in Ref. [37]. One
can show that 2μ∥ð∞Þ¼ 2μ⊥ð∞Þ¼mnþ2meþ4m2

e=mnþ
Oðm3

e=m2
nÞ, where me is the electron mass. We employed

the known R → ∞ limits and computed directly the R-
dependent partsW int

∥ ðRÞ≡W∥ðRÞ−W∥ð∞Þ andW int⊥ ðRÞ≡
W⊥ðRÞ −W⊥ð∞Þ of W∥ðRÞ and W⊥ðRÞ.
The values of the functions W int

∥ ðRÞ, W int⊥ ðRÞ, and
V int
na ðRÞ≡ VnaðRÞ − Vnað∞Þ were calculated at 52 points

in the range 1 ≤ R ≤ 18 bohr using a dedicated FCI code
and the same dXZcp orbital basis sets as used to calculate
the adiabatic correction, see Ref. [28] for the description of
the computational algorithm. We employed basis sets with
cardinal numbers up to X ¼ 6 forW int

∥ ðRÞ andW int⊥ ðRÞ and
up to X ¼ 5 for V int

na ðRÞ. The recommended values of
W int

∥ ðRÞ, W int⊥ ðRÞ, and V int
na ðRÞ were obtained by extrapo-

lations from the results computed with two largest basis sets
assuming the X−3 convergence. The analytic representa-
tions of these functions were obtained by fitting the
recommended values with functions of the form of
Eq. (7) with summation limits [M, I0, I1, N0, N1] equal
to [2,0,3,8,8] for W int

∥ ðRÞ, [2,0,2,8,8] for W int⊥ ðRÞ, and
[3,0,2,6,8] for V int

na ðRÞ. We estimate that in the well region
the obtained fits represent the exact values with errors
smaller than 5%. Equation (8) was solved numerically
using the Mathematica software [42].
The computed dissociation energyD0 and the size hRi of

the (J ¼ 0) bound state are presented in Table II, while
the plots of the excess masses Δm∥ðRÞ ¼ 2μ∥ðRÞ −mn,
Δm⊥ðRÞ ¼ 2μ⊥ðRÞ −mn, and of V int

na ðRÞ are shown in
Fig. 1. Our results confirm earlier observation [15] that the
adiabatic and relativistic corrections to D0 and hRi are
significant, but the effect of retardation is very small when
the leading relativistic and QED contributions are included
in VðRÞ. The nonadiabatic effect increases D0 by 2.6 neV
and decreases hRi by 0.42 Å, i.e., by the same amount as

TABLE II. Dissociation energy D0 (in neV) and the average
separation hRi (in Å) for 4He2. V ¼ VBO þ Vad þ Vrel þ VQED.

D0 hRi
Potential Nuclear Atomic Nuclear Atomic

VBO 145.2(5) 147.8(5) 46.20(7) 45.80(7)
VBO þ Vad 153.5(5) 156.3(5) 45.03(7) 44.65(7)
VBOþVadþVrel 134.1(5) 136.7(5) 47.90(8) 47.48(8)
V 136.7(5) 139.3(5) 47.48(8) 47.07(8)
V þ Vret 136.3(5) 138.9(5) 47.55(8) 47.13(8)
VþVretþnonad 138.9(5) 47.13(8)
VþVret, Ref. [15] 139.2(29) 47.09(46)
Expt. 151.9� 13.3a 52� 4

b

aRef. [14].
bRef. [13].
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does the QED correction. It is interesting to observe that
these changes are recovered with excellent accuracy by the
adiabatic calculations with atomic masses. We found
that the difference between the nonadiabatic values of
D0 and hRi and the adiabatic ones computed with atomic
masses are only −0.0007 neV and 0.00011 Å, respectively.
These differences are negligible due to the small values
Δm∥ðRÞ − 2me in the well region (R > 5 bohr), as shown
in Fig. 1, but can be expected to be larger for helium
properties sensitive to the potential at smaller values of R.
Our results resolve the long-standing controversy [43–45]
about which masses should be used in calculations for
weakly bound dimers.
The recommended values of D0 ¼ 138.9ð5Þ neV and

hRi ¼ 47.13ð8Þ Å agree with the former best theoretical
determinations [15], but have 6 times smaller uncertainties.
The small disagreement with the best measured value
of hRi [13] remains essentially unchanged, but our uncer-
tainty becomes now two orders, rather than one order,
smaller than the experimental one. Our value of D0

differs by 1.8σ and 1.2σ, respectively, from the values
1.1þ0.3

−0.2 mK ≈ 95þ25
−15 neV [13] and 112þ22

−16 neV [5,46]
derived from a nanosieve transmission experiment [13].
The value D0¼ 151.9�13.3 neV, obtained very recently
[14] using the Coulomb explosion technique, agrees with
our theoretical prediction within 0.98σ.
The interaction energies presented in this Letter establish a

new accuracy benchmark for the helium dimer. This
improvement was achieved using the ECG approach to solve
the four-electron Schrödinger equation in the BO approxi-
mation and by computing the post-BO corrections using
an improved methodology and significantly larger basis
sets. We also computed, for the first time, the effective
R-dependent vibrational and rotational masses and the
resulting nonadiabatic corrections to the properties of the
4He2 bound state. These calculations demonstrated that
atomic masses should be used in adiabatic calculations for

weakly bound systems. The predicted dissociation energy is
in agreement with the experimental determination via the
Coulomb explosionmethod, confirming the reliability of this
technique. In a separate publication, we will report applica-
tions of the computed potential and effective masses to
calculate properties of bulk heliumof relevance tometrology.
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