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The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the
neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is
important for constraining the neutron equation of state for use in astrophysics. The charge radii of several
neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-
separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding
proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N ¼ Z
depend upon the value of the symmetry energy at a density of 0.10 nucleons=fm3.
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The neutron skin is the difference in the root-mean-
square (rms) radii of neutrons and protons in a nucleus. It
was shown [1,2] that the neutron skin of 208Pb is propor-
tional to the derivative of the neutron equation of state
(EOS) ½E=N�ðρÞ near ρ ¼ 0.10 nucleons=fm3 in both non-
relativistic and relativistic mean-field models. Further work
[3–7] showed that the neutron skins of 208Pb and other
neutron-rich nuclei such as 48Ca are proportional to the
derivative of the symmetry energy at nuclear matter
saturation density (ρ0 ¼ 0.16 nucleons=fm3):

L ¼ 3ρ½∂EsymðρÞ=∂ρ�jρ¼ρ0
; ð1Þ

where EsymðρÞ ¼ ½E=A�ðρÞ − ½E=N�ðρÞ is the symmetry
energy, and ½E=A�ðρÞ is the symmetric nuclear-matter
EOS. L is important for the extrapolation of the EOS to
the lower and higher densities needed for understanding
neutron stars [8–11].
If one has perfect charge symmetry, then the neutron rms

radius in a given nucleus is equal to the proton charge
radius in its mirror nucleus. This means that the neutron
skin in a given nucleus can be obtained from the proton
radii of mirror nuclei. In practice, this can be done by
measuring the charge rms radii and then making the
relativistic and finite size corrections to deduce the
point-proton rms radii. Charge symmetry is distorted by
the Coulomb interaction in a way that can be calculated.
For example, with the Skx Skyrme energy-density

functional (EDF) [12] without the Coulomb interaction,
the results for 52Cr for the rms radius of neutrons, Rn, the
rms radius of protons, Rp, and the neutron skin,
ΔRnp ¼ Rn − Rp, (in units of fm) are

52Cr; Rn ¼ 3.5844; Rp ¼ 3.4961; and

ΔRnp ¼ 0.0882;

and the results for the mirror nucleus 52Ni are

52Ni; R0
n ¼ 3.4956; R0

p ¼ 3.5850; and

ΔR0
np ¼ −0.0894:

The proton radius difference of 0.0889 fm is essentially
equal to the neutron skin in 52Cr. (The small difference of
about 0.0007 fm comes from the 0.13 percent difference of
the proton and neutron mass in the kinetic energy operator.
The uncertainty from this is an order of magnitude smaller
than the Coulomb effects discussed below.) The shell-
model wave functions for the nuclei from 48Ca to 56Ni are
dominated by the 0f7=2 orbital and I have assumed this
configuration for the EDF calculations. (This is the con-
figuration used for most EDF calculations of the 48Ca
neutron skin.) The EDF results presented here for charge
radii and neutron skins should be extended beyond the
0f7=2 model, for example, by including pairing in the EDF
calculations. This may change the final numerical values a
little, but not the trends and conclusions made here.
In this Letter I show results from 48 Skyrme functionals.

They start from the 12 functionals used in Ref. [13] that are
among the “best” chosen in Ref. [14] out of several hundred
from a variety of experimental criteria as well as some
constraints from neutron-star properties. As shown in
Table I, they cover a reasonable range of values for the
symmetric nuclear-matter effective mass (m�=m ¼
0.70–1.00) and incompressibility (Km ¼ 212−242MeV)
as compared to values extracted from the energy of the
giant monopole resonances (Km ¼ 217 − 230 MeV) [15].
There are four versions of these 12 basic types. The first
three versions are those from Ref. [13] where the isovector
properties of the functionals were chosen to fit arbitrarily
fixed values for the neutron skin of 208Pb of 0.16, 0.20, and
0.24 fm. The result from this work was that the neutron
EOS at a density of 0.10 neutrons=fm3 was found to be
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½E=N�ð0.10Þ ¼ 11.4ð1.0Þ MeV. The symmetry energy at
this density is Esymð0.10Þ ¼ 25.5ð1.0Þ MeV. In addition,
for this Letter, I add a fourth version where the neutron skin
of 208Pb was constrained to be 0.12 fm. For all of these the
neutron effective mass was fixed to be m�

n=m ≈ 0.90. In
Ref. [16] it was found that a reasonable variation in the
neutron effective mass had a small effect on the neu-
tron skin.
The results for the neutron skins of 48Ca and 208Pb for

these 48 functionals are plotted versus the slope of the

symmetry energy in Fig. 1. As found previously
the correlation between ΔRnp and L is high. There is a
similar high correlation between ΔRnp and the slope of the
symmetry energy at a lower density of 0.10 nucleons=fm3

as found in Ref. [13].
The result for the neutron skin of 52Cr is plotted versus

the mirror radius difference between the protons in 52Ni and
52Cr in Fig. 2. These were obtained with the 48 functionals,
but with the Coulomb potential turned off. As expected, the
points on this plot lie on a straight line. The values of the
points are clustered according to the corresponding results
for the neutron skin of 208Pb as labeled in the figure.
With the addition of the Coulomb interaction the Skx

results are (in units of fm)

52Cr; Rn ¼ 3.605; Rp ¼ 3.562; and

ΔRnp ¼ 0.043;

and

52Ni; R0
n ¼ 3.523; R0

p ¼ 3.674; and

ΔR0
np ¼ −0.151;

with R0
p − Rp ¼ 0.112 fm. There is an asymmetry in the

neutron skin due to the fact that the Coulomb interaction
pushes out the density of the protons relative to neutrons.
The results for the 48 Skyrme functionals are shown in
Fig. 3. The linear correlation becomes distorted. This is due
to the self-consistent competition between the Coulomb
interaction and the symmetry potential in the EDF calcu-
lations. The effective Coulomb interaction used in all of
these EDF calculations reproduces the binding energy

TABLE I. Properties of the Skyrme functionals from Ref. [13].
The power of the density-dependent term in the Skyrme func-
tional is 1þ σ. Km is the symmetric nuclear-matter incompress-
ibility and m�=m is the effective mass.

Name σ Km (MeV) [m�=m]

KDE0v1 s3 1=6 216 0.79
NRAPR s6 0.14 225 0.85
Ska25 s7 0.25 219 0.99
Ska35 s8 0.35 244 1.00
SKRA s9 0.14 212 0.79
SkT1 s10 1=3 242 0.97
SkT2 s11 1=3 242 0.97
SkT3 s12 1=3 241 0.98
SQMC750 s15 1=6 228 0.71
SV-sym32 s16 0.30 237 0.91
SLy4 s17 1=6 224 0.70
SkM* s18 1=6 218 0.78
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FIG. 1. Neutron skins for 48Ca and 208Pb for 48 Skyrme
functionals plotted versus the slope of the symmetry energy,
L. The colors correspond to the constraints made for the neutron
skin of 208Pb: 0.12 fm (red), 0.16 fm (orange), 0.20 fm (green),
and 0.24 fm (blue). The lines are to guide the eye.
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FIG. 2. Difference in the proton rms radii of the mirror nuclei
52Ni and 52Cr compared to the neutron skin of 52Cr. Results are
shown for the 48 Skyrme functionals discussed in the text but
without the Coulomb interaction. The points are labeled accord-
ing to their respective values for the neutron skin of 208Pb ranging
from 0.12 to 0.24 fm.
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difference between 48Ni and 48Ca [17], and implicitly
contains an approximation for the small charge asymmetry
of the nuclear interaction [12,18].
The effect of this distortion is mainly for the neutron

skin. This is illustrated in Fig. 4 where the neutron skin of
52Cr and ΔRch for 52Ni and 52Cr are each plotted versus L.
For this mass region, the spread in the neutron skin due to
the Coulomb distortion of about 0.010 fm is approximately

independent of jN − Zj (compare the scatter for ΔRnp of
Figs. 4 and 5 with that of Fig. 6). For 56Ni with N ¼ Z
shown in Fig. 6, it is found that the neutron skin is
not determined by L; rather, the skin is correlated with
the value of the symmetry energy at a density of
0.10 nucleons=fm3, Esymð0.10Þ. Some of the scatter in
the neutron skin of 48Ca as a function of L shown in Fig. 1
comes from this dependence on Esymð0.10Þ.
One concludes that ΔRch is correlated with jN − Zj × L,

whereas the neutron skin ΔRnp depends on both jN − Zj ×
L and Esymð0.10Þ. When N − Z becomes large the L
dependence in ΔRnp dominates. Danielewicz has studied
this dependence in the framework of the nuclear mass
formula with the addition of a surface symmetry energy
term [19].
The charge radii are obtained from the proton radii by

making corrections for the finite charge size of the proton
and neutron and for the relativistic effects [20,21]. Similar
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FIG. 3. Same as Fig. 2 but with the Coulomb interaction added.
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FIG. 4. The neutron skin of 52Cr (top) and ΔRch for 52Ni and
52Cr (bottom) plotted versus the slope of the symmetry energy, L.
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FIG. 5. The neutron skin of 54Fe (top) and ΔRch for 54Ni and
54Fe (bottom) plotted versus the slope of the symmetry energy, L.
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FIG. 6. The neutron skin of 56Ni plotted versus the slope of the
symmetry energy, L, (left), and versus the value of the symmetry
energy at a density of 0.10 nucleons=fm3 (right).
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corrections must be considered for the neutron skin when
the proton and neutron radii are deduced by electromag-
netic probes of the charge (proton) and weak-charge
(neutron) radii. The relativistic corrections are not negli-
gible. From the measured charge radius of 48Ca of 3.478
(5) fm [22], the deduced proton radius is 3.417 (3.408) fm
with (without) the relativistic corrections. The relativistic
corrections were derived under the assumption of spin
zero [20].
The extent to which mirror charge radii can be used to

determine L depends on the accuracy to which they can be
measured. The ideal case is 48Ni vs 48Ca (jN − Zj ¼ 8), but
48Ni would be difficult to measure because it is hard to
produce and decays by two-proton emission with a half-life
of 2.1þ2.1

−0.7 ms [23]. Perhaps the next best case is that for 52Ni
vs 52Cr with jN − Zj ¼ 4 as discussed above and shown in
Fig. 4. The measured charge radius of 52Cr is 3.645(3) from
Ref. [24] and 3.643(3) from Ref. [25]. Determination of the
charge radius of 52Ni to a similar degree of accuracy will
require advanced rare-isotope beam facilities such as FRIB.
The results for 54Ni and 54Fe with jN − Zj ¼ 2 are shown in
Fig. 5. In this case the charge radius of 54Fe is 3.694(5) [26].
The charge radius of 54Ni may be obtainable in the near
future at isotope separator or rare-isotope beam facilities
such as those presented in Ref. [27]. The obvious problem
is that the dependence of ΔRch on L is linear in jN − Zj,
and one would need higher precision experiments for
smaller jN − Zj in order to constrain the value of L to a
similar level of accuracy.
We can consider existing data for lighter nuclei with the

caveat that the EDF model approximation for these may
become less reliable. The results for 34Ar and 34S with
jN − Zj ¼ 2 are shown in Fig. 7. For this case the orbital
occupations for the EDF are taken from the sd wave
functions obtained with the USDB Hamiltonian [28]. The
experimental charge radius for 34Ar is 3.3657(21)(92) fm
where (21) is the statistical error and (92) is the systematic
error [29] (the compiled value in Ref. [22] does not include
the systematic error). The experimental charge radius
for 34S is 3.284(2) fm [30]. The radius difference of
0.082(9) fm is shown in Fig. 7. Compared to the EDF
calculations it implies a value of L < 60 MeV. The error is
dominated by the systematic error. One of the challenges of
new experiments will be to reduce the systematic errors that
depend upon calibrations and/or calculations of the mass-
and field-shift coefficients that connect the atomic hyper-
fine structures to the change in charge radii [27,29].
At present the electromagnetic determination of the

neutron radius from parity-violating electron scattering
has a large error. The 208Pb neutron skin obtained from
the PREX parity-violating electron-scattering experiment is
Rnp ¼ 0.302�ð0.175Þexp�ð0.026Þmodel�ð0.005Þstrange fm
[31,32]. A PREX-II experiment has been approved that is
expected to reduce the error bar to about 0.06 fm.

Parity-violating experiments are planned for 48Ca [33].
The precision that might be obtained from experiments
onmirror charge radii is competitivewith the planned JLAB
experiment. The determination of the neutron density from
strongly interacting probes depends upon one’s confidence
in understanding the strong interaction.
The correlations between the neutron skins, the mirror

charge radii, and the properties of the equations of state
obtained with the Skryme EDF should be compared to
results obtained from ab initio approaches based on chiral
two- and three-body interactions [16,34,35] in order to
constrain and extend the functional forms used for the EDF
calculations.
In summary, I have shown that difference in charge radii,

ΔRch, for mirror pairs is proportional to jN − Zj × L where
L is the derivative of symmetry energy given in Eq. (1). In
contrast, the neutron skinΔRnp is proportional jN − Zj × L
plus a term approximately independent of jN − Zj that is
proportional to Esymð0.10Þ, the symmetry energy at a
density of 0.10 nucleons=fm3. When jN − Zj is large (as
in 48Ca) the L term dominates. But as jN − Zj goes to zero
(as in 56Ni) only the Esym term remains. If the charge radii
can be measured within an error of about 0.005 fm, the
constraint on L from the mirror charge radii is better than
that obtained from the planned parity-violating electron
scattering experiments. It will be important to have con-
sistent results from several mirror pairs, and to take into
account the systematic uncertainties, to be sure that there
are no experimental or theoretical inconsistencies.
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