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A central question in quantum computation is to identify the resources that are responsible for quantum
speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with
magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The
phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of
regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of
magic states as a necessary resource for a large class of quantum computation schemes on qubits. We
illustrate our result with a concrete scheme related to measurement-based quantum computation.
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The model of quantum computation by state injection
(QCSI) [1] is a leading paradigm of fault-tolerance quan-
tum computation. Therein, quantum gates are restricted to
belong to a small set of classically simulable gates, called
Clifford gates [2], that admit simple fault-tolerant imple-
mentations [3]. Universal quantum computation is achieved
via injection of magic states [1], which are the source of
quantum computational power of the model.
A central question in QCSI is to characterize the physical

properties that magic states need to exhibit in order to serve
as universal resources. In this regard, quantum contextual-
ity has recently been established as a necessary resource for
QCSI. This was first achieved for quopit systems [4,5],
where the local Hilbert space dimension is an odd prime
power, and subsequently for local dimension two with the
case of rebits [6]. In the latter, the density matrix is
constrained to be real at all times.
In this Letter we ask “Can contextuality be established as

a computational resource for QCSI on qubits?” This is not a
straightforward extension of the quopit case because the
multiqubit setting is complicated by the presence of state-
independent contextuality among Pauli observables [7,8].
Consequently, every quantum state of n ≥ 2 qubits is
contextual with respect to Pauli measurements, including
the completely mixed one [5]. It is thus clear that
contextuality of magic states alone cannot be a computa-
tional resource for every QCSI scheme on qubits.
Yet, there exist qubit QCSI schemes for which con-

textuality of magic states is a resource, and we identify
them in this Letter. Specifically, we consider qubit QCSI
schemes MO that satisfy the following two constraints:
(C1) Resource character. There exists a quantum state that
does not exhibit contextuality with respect to measurements

available inMO. (C2) Tomographic completeness. For any
state ρ, the expectation value of any Pauli observable can be
inferred via the allowed operations of the scheme.
The motivation for these constraints is the following.
Condition (C1) constitutes a minimal principle that

unifies, simplifies and extends the quopit [5] and rebit [6]
settings. While seemingly a weak constraint, it excludes the
possibility of Mermin-type state-independent contextuality
[7,8] among the available measurements (see Lemma 1
below). A priori, the absence of state-independent contex-
tuality comes at a price. Namely, for any QCSI schemeMO
on n ≥ 2 qubits, not all n-qubit Pauli observables can be
measured. Thus, the question arises of whether this limits
access to all n qubits for measurement. As we show in this
Letter, this does not have to be the case.
Addressing this question, we impose tomographic com-

pleteness as our technical condition for a true n-qubit QCSI
scheme, cf. (C2). It means that any quantum state can be
fully measured given sufficiently many copies. The rebit
scheme [6], for example, does not satisfy this.
One of our results is that for any number n of qubits there

exists a QCSI scheme that satisfies both conditions (C1)
and (C2). The reason why both conditions can simulta-
neously hold lies in a fundamental distinction between
observables that can be measured directly in a given qubit
QCSI scheme from those that can only be inferred by
measurement of other observables. The resulting qubit
QCSI schemes resemble their quopit counterparts [4,5]
in the absence of state-independent contextuality, yet have
full tomographic power for the multiqubit setting.
The main result of this Letter is Theorem 1. It says that if

the initial (magic) states of a qubit QCSI scheme are
describable by a noncontextual hidden variable model
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(NCHVM) it becomes fundamentally impossible to
implement a universal set of gates. We highlight that
Theorem 1 applies generally to any scheme fulfilling the
condition (C1), including that of Ref. [6].
The condition (C1) plays a pivotal role in our analysis. It

is clear that contextuality of the magic states can be a
resource only if condition (C1) holds. In this Letter we
establish the converse, namely, that contextuality of the
magic states is a resource for QCSI if condition (C1) holds.
Therefore, condition (C1) is the structural element that
unifies the previously discussed quopit [5] and rebit [6]
case, and the qubit scenarios discussed here. Together,
condition (C1) and Theorem 1 characterize the contextual-
ity types that are needed in quantum computation via state
injection, showing that state-dependent contextuality with
respect to Pauli observables is a universality resource.
As a final remark, we note that the measurements

available in QCSI schemes satisfying (C1) preserve positi-
vity of suitable Wigner functions [9].
Setting.— An n-qubit Pauli observable Ta is a Hermitian

operator with �1 eigenvalues of form

Ta ≔ ξðaÞZðaZÞXðaXÞ ≔ ξðaÞ ⊗n
i¼1

Z
aZi
i ⊗

n

j¼1
X
aXj
j ; ð1Þ

where a ≔ ðaZ; aXÞ is a 2n-bit string and ξðaÞ is a phase.
Pauli observables define an operator basis that we call T n.
A qubit scheme MO of quantum computation via state

injection (QCSI) consists of a resourceM of initial “magic”
states and 3 kinds of allowed operations: (1)Measurement of
any Pauli observable in a set O. (2) A group G of “free”
Clifford gates that preserveO via conjugation up to a global
phase. (3) Classical processing and feedforward. Adaptive
circuits of operations 1–3 may be combined with classical
postprocessing in order to simulate measurements of Pauli
observables that are not inO (cf. Fig. 1). We name the latter

“inferable” and let I be the superset of O defined by them.
Analogously, we let J be the set of sets of compatible Pauli
observables that can be inferred jointly, which define the
“contexts” of our computational model. As shown in Fig. 1,
not every set of compatible Pauli observables is necessarily
in J . Yet, A ∈ I implies that fAg ∈ J . Furthermore, for
any pair of observables fA;Bg ∈ J and α ∈ R, the observ-
ablesAB,αA can be inferred jointly bymeasuringA,B, since
the eigenvalues of the latter determine those of the former.
Hence,

fA;Bg ∈ J ⇒ fA;B; AB;αAg ∈ J ; ∀ α ∈ R: ð2Þ
Constraint (C2) holds if and only if T n ⊂ I , i.e., if and
only if the outcome distribution of any Pauli observable
can be sampled via measurements in O and classical
postprocessing.
Contextuality.—Above, imposing (C1) means that there

exists a quantum state ρ whose measurement statistics can
be reproduced by a noncontextual hidden variable model
(NCHVM), which we introduce next.
Definition 1.—A NCHVM ðS; qρ;ΛÞ for the state ρwith

respect to a scheme MO consists of a probability distri-
bution qρ over a set S of internal states and a set Λ ¼
fλνgν∈S of value assignment functions λν∶ I → f�1g that
fulfill (i) For any λν ∈ Λ and M ∈ J the real numbers
fλνðAÞgA∈M are compatible eigenvalues: i.e., there exists a
quantum state jψi such that

Ajψi ¼ λνðAÞjψi; ∀ A ∈ M: ð3Þ
(ii) The distribution qρ satisfies

hAiρ ¼ trðAρÞ ¼
X
ν∈S

λνðAÞqρðνÞ; ∀ A ∈ I : ð4Þ

The state ρ is said to be “contextual” or to “exhibit
contextuality” if no NCHVM with respect to MO exists.
Qubit QCSI for which all possible inputs exhibit con-

textuality are forbidden by (C1). Specifically, in this Letter,
O must be a strict subset of T n.
Main result.—We now establish contextuality as a

resource for quantum computational universality for all
qubit QCSI schemes that fulfill (C1). Below, we call a
scheme MO universal if for any integer n ≥ 1 and V ∈
Uð2nÞ there exists a finite-size circuit of MO operations
that prepares the n-qubit state Vj0i up to any positive trace-
norm error.
Theorem: A qubit QCSI schemeMO satisfying (C1) is

universal for n ≥ 3 qubits only if its magic states exhibit
contextuality.
Theorem 1 applies even in the setting where the

computation happens in an encoded subspace, reproducing
the rebit results of Ref. [6]. We provide a general proof of
this fact in a companion paper [9] and show it here in the
encoding-free scenario under an additional assumption,
denoted (⋆), that every qubit must be measurable in at
least two complementary Pauli bases. This requirement
enforces MO to exhibit the phenomenon of quantum

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

 YY

inferable observables

directly measurable
observables

non-inferable
observable

FIG. 1. We consider an example scheme MO on two qubits
with O ¼ fX1; X2; Z1; Z2g. Straight lines connect maximal sets
of jointly inferable observables. Here, the correlator X1X2 (Z1Z2)
is not in O but can be inferred by measuring X1, X2 (Z1, Z2) and
multiplying their outcomes. (This scheme is reminiscent of the
syndrome measurement of subsystem codes [10].) Yet, X1X2

cannot be inferred jointly with Z1Z2 because a forbidden
measurement of X1, X2, Z1, Z2 would be required to reproduce
all quantum correlations, but after measuring, e.g., Z1 and Z2 to
infer Z1Z2 the outcome statistics of X1X2 become uniformly
random. Similarly, X1Z2 and Z1X2 can be separately inferred but
not jointly. Further, YY cannot be inferred (observables in O
cannot distinguish its eigenstates).
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complementarity and simplifies our main argument while
preserving its core structure.
The proof of Theorem 1 relies on a characterization of

noncontextual hidden variable models for qubit QCSIs. We
make three key observations about such models.
First, by applying Def. 1.(i) toM ≔ fA; B; AB;αAg ∈ J

as in Eq. (2), we derive two constraints

λνðABÞ ¼ λνðAÞλνðBÞ; λνðαAÞ ¼ αλνðAÞ; ð5Þ
that any λν ∈ Λ must fulfill for any pair fA;Bg ∈
J ; α ∈ R.
Second, we prove the following lemma.
Lemma 1: For any QCSI scheme MO fulfilling (C1)

the phase ξðaÞ in Eq. (1) can be chosen w.l.o.g. so that

TaTb ¼ Taþb for any triple fTa; Tb; TaTbg ∈ J : ð6Þ
Proof.—Let ξ be given and let λν be a consistent value

assignment for the scheme MO. W.l.o.g., we can redefine
T 0

n ≔ fT 0
a ≔ λνðTaÞTa; Ta ∈ T ng and O0 ¼ fT 0

a; Ta ∈
Og introducing a classical relabeling of measurement
outcomes, without changing any quantum feature of the
scheme. Using Taþb ¼ �TaTb, we obtain

T 0
aþb ¼ λνðTaþbÞTaþb ¼ λðð�1ÞTaTbÞð�1ÞTaTb

¼ð5Þð�1Þ2λðTaTbÞTaTb¼ð5ÞλðTaÞTaλðTbÞTb ¼ T 0
aT 0

b:

□

Last, we observe that for any M ∈ J , jψi as in Eq. (3)
and Tb ∈ T n, the state Tbjψi is a joint eigenstate of M:

ðγTaÞTbjψi¼ðλνðγTaÞð−1Þ½a;b�ÞTbjψi; ∀ γTa∈M; ð7Þ
where ½a; b� ≔ aXbZ þ aZbX mod 2; combined with
Eq. (5), this induces a group action of Z2n

2 on value
assignments

λν⃗
u λνþuðTaÞ ≔ λνðTaÞð−1Þ½u;a�; ∀ u ∈ V: ð8Þ

With these tools, we arrive at a powerful intermediate
result, namely, a method to construct NCHVMs that can
simulate qubit QCSIs on noncontextual inputs.
Lemma 2: For any qubit scheme MO fulfilling (C1)

and any quantum circuit C of MO operations, if there
exists a NCHVM ðS; qρin ;ΛÞ for some given input state ρin,
there then exists a NCHVM ðS; qρout ;ΛÞ for the output
ρout ≔ CðρinÞ.

Lemma 2 establishes that contextuality cannot be freely
generated in qubit QCSI. A surprising aspect of this fact is
that it holds for circuits that contain intermediate measure-
ments. Intuitively, unitary gates in G must induce an action
on the set of noncontextual states since they preserve the set
O. However, the evolution of noncontextual states under
measurement is far from intuitive since the latter can often
prepare states that are inaccessible to gates [11].
Lemma 2 leads to a simple classical random-walk

algorithm for sampling from the output distribution of
all measurements in C, which is further efficient if oracles
for sampling from qρin and computing any λν ∈ Λ are given.
The random walk first samples a state ν0 ∈ S from qρin and,
upon measurement of Tat ∈ O at time t, outputs λνtðTatÞ
given νt and updates νt → νt þ a with 1=2 probability. The
correctness of this algorithm follows from Eq. (9) below
and is analyzed in detailed in Ref. [9].
Proof.—We fix a phase convention for Ta so that Eq. (6)

in Lemma 1 holds and introduce a simplified notation

λνðaÞ ≔ λνðTaÞ; where Ta ∈ I ; a ∈ Z2n
2 :

Because free unitaries preserve O they can be propagated
out of C via conjugation. Hence, we can w.l.o.g. assume
that C consists only of measurements. Our proof is by
induction. At time t ¼ 1, ρ1 ¼ ρin has an NCHVM by
assumption. At any other time tþ 1, given an NCHVM
ðS; qρt ;ΛÞ for the state ρt, we construct an NCHVM
ðS; qρtþ1

;ΛÞ for ρtþ1. Specifically, let Tat ∈ O be the
observable measured at time t with corresponding outcome
st ∈ f�1g, s≺t ≔ ðs1;…; stÞ be the string of prior meas-
urement records, and pðstjs≺tÞ the conditional probability
of measuring st; we will now show that ρtþ1 admits the
hidden-variable representation

qρtþ1
ðνÞ ≔ δst;λνðatÞ

pðstjs≺tÞ
qρtðνÞ þ qρtðνþ atÞ

2
; ð9Þ

where pðstjs≺tÞ can be predicted by the HVM, since
2pðstjs≺tÞ ¼ hI þ stTatiρt ¼ hIiρt þ sthTatiρt—which are
known by the induction promise. Our goal is to show that
ðS; qρtþ1

;ΛÞ predicts the expected value of any Ta ∈ I
measured at time tþ 1. For this, we derive a useful
expression,

hTaiHVMρtþ1
¼

X
ν∈S

qρtþ1
ðνÞλνðaÞ

¼ð9Þ
X
ν∈S

δst;λνðatÞqρtðνÞ
2pðstjs≺tÞ

λνðaÞ þ
X
ν∈S

δst;λνðatÞqρtðνþ atÞ
2pðstjs≺tÞ

λνðaÞ:

¼ð8Þ
X
ν∈S

δst;λνðatÞqρtðνÞ
2pðstjs≺tÞ

λνðaÞ þ
δst;λνðatÞqρtðνÞ
2pðstjs≺tÞ

λνðaÞð−1Þ½a;at�; ð10Þ
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which we evaluate on two cases: (A) Ta, Tat anticommute,
hence, ½a; at� ¼ 1. We get hTaiHVMρtþ1

¼ 0, in agreement
with quantum mechanics. (B) Ta, Tat commute. In this
case ½a; at� ¼ 0. Using the identity δs;λ ¼ ð1þ sλÞ=2; s;
λ ∈ f�1g, we obtain

hTaiHVMρtþ1
¼

X
ν∈S

1þ stλνðatÞ
2pðstjs≺tÞ

qρtðνÞλνðaÞ

¼ð5Þ
P

ν∈SqρtðνÞλνðaÞ þ st
P

ν∈SqρtðνÞλνðaþ atÞ
2pðstjs≺tÞ

:

Finally, by induction hypothesis, we arrive at

hTaiHVMρtþ1
¼ hTaiρt þ sthTaþatiρt

2pðstjs≺tÞ
¼ð6Þ trðρt

IþstTat
2

TaÞ
pðstjs≺tÞ

¼ tr

�½IþstTat
2

ρt
IþstTat

2
�

pðstjs≺tÞ
Ta

�
¼ trðρtþ1TaÞ;

which is again the quantum mechanical prediction. □

Finally, we prove our main result.
Proof of theorem 1.—We derive a contradiction by

assuming (A1) that MO is universal and (A2) that all
magic states in M are noncontextual. We first consider the
computation to be error-free and drop this assumption at
the end.
Recall that, by assumption (⋆), two complementary Pauli

observables, denoted Zi, Xi ∈ O w.l.o.g., can be measured
on any qubit. By (A1), the scheme MO can prepare the
encoded GHZ state jψi that is uniquely stabilized by
X1X2X3, −X1Z2Z3, −Z1X2Z3, −Z1Z2X3. Furthermore,
MO can also infer the value of any correlator of form
A1A2A3 with Ai ∈ fXi; Zig (in particular, jψi’s stabilizers)
by measuring A1, A2, A3 individually. Quantum mechanics
predicts

hX1X2X3 − X1Z2Z3 − Z1X2Z3 − Z1Z2X3iQMψ ¼ 4:

On the other hand, by (A2) and Lemma 2, there exists an
NCHVM for jψi with respect to all quadruples of form
fA1; A2; A3; A1A2A3; Ai ∈ Xi; Zig. Using constraint (5) for
noncontextual value assignments, we derive an inequality
for the NCHVM’s prediction

hX1X2X3 − X1Z2Z3 − Z1X2Z3 − Z1Z2X3iHVMψ ≤ 2;

originally due to Mermin [12], which contradicts quantum
mechanics. Hence, either (A1) or (A2) must be false.
Last, our argument holds if arbitrarily small errors

are present because the HVM’s prediction deviates
from the quantum mechanical one by a finite amount
(larger than 2). □

A qubit QCSI scheme powered by contextuality.— Here
we prove that for any number n of qubits there exists a
universal qubit QCSI scheme MO that fulfills the con-
ditions (C1) and (C2). The O measurements available in

this scheme are all single-qubit Pauli measurements, the
group G contains all single-qubit Clifford gates, and the
magic state is locally unitarily equivalent to a 2D cluster
state. This family of examples demonstrates that the
classification provided by our main result (Theorem 1) is
not empty.
We now show that single-qubit Pauli measurents satisfy

(C1) and (C2). First, note that the value of any Pauli
observable can be inferred by measuring its single-qubit
tensor components; hence, local QCSI fulfills (C2).
Second, we show (C1) is also met by giving a NCHVM
for the mixed state ρ ¼ I=2n with respect to single-qubit
operations. The most general joint measurement in J that
we can implement with the latter is to measure n single-
qubit Paulis σ1;…; σn on distinct qubits, which lets us infer
the value of any observable γ ⊗n

i¼1 σ
αi
i with α ∈ Zn

2; γ ∈ R.
Hence, the function λ0ð⊗n

i¼1 σ
αi
i Þ ≔ 1, which is a joint

eigenvalue of f⊗n
i¼1 σ

αi
i ∶α ∈ Zn

2g, extends linearly to a
value assignment fulfilling Def. 1(i). Picking T n ¼
fI; X; Y; Zg⊗n, we obtain an NCHVM via (8) with value
assignments λbðTaÞ ≔ ð−1Þ½a;b�; b ∈ Z2n

2 wherein ρ corre-
sponds to a probability distribution qρðbÞ ≔ 1=22n: indeed,
our HVM predicts hγTaiρ ¼ γ for Ta ¼ T0 ¼ I and 0
otherwise, matching the quantum mechanical prediction
—this can be checked by computing the average of λbðTaÞ
over b in each case.
Last, we present a family of magic states that promote

our local QCSI scheme to universality. Unlike in standard
magic state distillation [1], which relies on product magic
states, our scheme has no entangling operations and
requires entanglement to be present in the input to be
universal. We show that a possibility is to use a modified
cluster state jΨi that contains cells as in Fig. 2 with
“red-site” qubits that are locally rotated by a T gate
e−iπ=8Z. Our approach is to use such state to simulate a
universal scheme of measurement based quantum compu-
tation based on adaptive local measurements fZ; X; Y; X �
Y=

ffiffiffi
2

p g on a regular 2D cluster state [13]. Local Pauli

(a) (b)

FIG. 2. QCSI with modified cluster state jΨi and single-qubit
Xi, Yj, Zk Pauli measurements: the Z measurements are used to
cut out of the plane a web corresponding to some layout of a
quantum circuit, while the X measurements drive the MBQC
simulation of this circuit [13]. By “rerouting” a wire piece, one
may choose between implementing and not implementing a non-
Clifford gate. (a) Identity operation on the logical state space.
(b) X or Y is measured adaptively to implement a logical e−iπ=8Z

gate in MBQC [13].
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measurements are available by assumption. Now, an on-site
measurement of X or Y on one of the red qubits of jΨi has
the same effect as measuring ðX � YÞ= ffiffiffi

2
p

on a cluster
state. To complete the simulation, it is enough to reroute the
measurement-based computation through a red site (this
can be done with the available X measurements [13])
whenever a measurement of ðX � YÞ= ffiffiffi

2
p

is needed. (See
Fig. 2 for illustration.) Note that an alternative resource
state for one-qubit Pauli measurements is the so-called
“union-jack” hypergraph state of Ref. [14].
Conclusion.—In this Letter we investigated the role of

contextuality in qubit QCSI and proved that it is a necessary
resource for all such schemes that meet a simple minimal
condition: namely, that the allowed measurements do not
exhibit state-independent contextuality. Our result applies
if and only if contextuality emerges as a physical property
possessed by quantum states (with respect to the measure-
ments available in the computational model). We extended
earlier results on odd-prime dimensional qudits [4,5] and
rebits [6], and thereby completed establishing contextuality
as a resource in QCSI in arbitrary prime dimensions. We
conjecture that this result generalizes to all composite
dimensions [15] (the composite odd case was recently
covered after completion of this work [16]) and to algebraic
extensions of QCSI models based on normalizer gates
[11,17–20]. Further, we demonstrated the applicability of
our result to a concrete qubit QCSI scheme that does not
exhibit state independent contextuality while retaining
tomographic completeness.
Finally, we refer to a companion paper [9] where we

investigate the role of Wigner functions in qubit QCSI.
There, we use Wigner functions to motivate the near-
classical sector of the free operations in qubit QCSI, and
relate their Wigner-function negativity to contextuality and
hardness of classical simulation. In comparison, in this
Letter, constraint (C1) completely removes the need to
introduce Wigner functions, and leads us to the simplest
and most general proof that contextuality can be a resource
in qubit QCSI that we are aware of. For this reason, we
regard the establishing of condition (C1) as a fundamental
structural insight of our Letter.
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