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We propose a scalable scheme for optical quantum computing using measurement-induced continuous-
variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a
single spatial mode is deterministically processed in a nested loop by an electrically programmable gate
sequence. This architecture can process any input state and an arbitrary number of modes with almost
minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore,
quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an
infinite-dimensional Hilbert space of a single light mode.
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Introduction.—Quantum optical systems provide a
promising platform to realize universal quantum computing.
Recently, there has been significant progress in the imple-
mentation of optical quantum logic gates by a measurement-
induced scheme, i.e., by using off-line prepared ancillary
states, measurement, and feedforward [1-10]. This scheme
utilizes specific ancillae to perform quantum gates which are
difficult to perform directly on quantum states. For con-
tinuous variables (CVs), this scheme has offered determin-
istic gates by means of unconditionally prepared squeezed
ancillae and highly efficient homodyne detection [5—8]. This
is a great advantage over qubits, where ancilla preparation
and photon detection are less efficient and measurement-
induced gates become probabilistic [3,4]. For this reason,
there has been a growing interest in a hybrid approach
combining robust encoding of qubits and deterministic gates
of CVs [11,12]. This approach potentially enables scalable,
universal, and fault-tolerant quantum computing, which is
hard to achieve by either qubit or CV scheme alone [13].

Universal quantum computation can be realized by the
sequence of such measurement-induced gates. However,
the previous implementation of such gates [3,4,6-8]
encoded quantum information in spatial modes, requiring
a large number of optical components and resources for
sequential gates. For scalable quantum computing, inte-
grated waveguides [14,15] have been developed to minia-
turize optical circuits, but it still requires arrays of sources
operating in parallel [16] and the stabilization of a large
number of interferometers. An alternative solution to the
scalability is to employ time-bin encoding instead of spatial-
mode encoding. For CVs, time-bin encoding has been used
for generating large-scale entangled states in a scalable
manner [17,18]. As for qubits, linear optical quantum
computing using time-bin encoding [19] and a loop-based
architecture for processing time-bin encoded information
[20-23] have been shown to be a useful platform for scalable
quantum computing.
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Here we propose a scalable scheme for quantum comput-
ing using measurement-induced CV gates in a loop-based
architecture. In our scheme (Fig. 1), quantum information
encoded in a string of n pulses of a single spatial mode are
sent to a nested loop circuit with the other m ancilla pulses.
Quantum gate sequence is then deterministically performed
in the loop circuit with assistance of the ancilla pulses by
electrically programmable control of switches, beam-splitter
transmissivity, phase shifters, and amplifier gain. Our
scheme has several distinct features. First, it can deal with
any input state and an arbitrary number of modes in the same
experimental complexity, offering higher scalability than the
conventional spatial-mode encoding schemes. Second, our
scheme is resource efficient: it requires only one ancillary
squeezing resource and a single set of a homodyne detector
and feedforward electronics to deterministically perform an
arbitrary multimode Clifford gates. Finally, if suitable
ancillae are provided, it offers a universal gate set for both
qubits and CVs. Our scheme is fully compatible with a
known error-correction scheme which encodes a qubit in an
infinite-dimensional Hilbert space of a single light mode
[13], ultimately enabling fault-tolerant quantum computa-
tion with almost minimum resources.

Single-mode Clifford gates.—Before describing the
nested loop architecture in Fig. 1, we begin by introducing
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FIG. 1. Loop-based architecture for universal quantum comput-

ing, featuring a homodyne detector (HD), displacement operation
(Disp.), a phase shifter (PS) and a variable beam splitter (VBS).
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a single-loop architecture to implement an arbitrary single-
mode Clifford gate. In terms of CVoperations, Clifford gates
are equivalent to Gaussian gates, which can be decomposed
into the form R(6,)S(r)R(6;) up to a phase-space displace-
ment [24]. Here R(6) is a phase-space rotation by angle @
and S(r) (r>0) is an X-squeezing operator defined as
S'(r)28(r) = e and 7 (r)p S(r) = ¢’ p, where % and p
are quadrature operators of a light mode ([, p] = i). Since
phase-space displacements and rotations can be easily
implemented with optical modulators and phase shifters,
the main difficulty in single-mode Gaussian gates is the
squeezing gate requiring second-order nonlinear optical
effects. Instead of directly coupling fragile quantum states
to nonlinear optical media for squeezing, a measurement-
induced squeezing scheme has been previously proposed [5]
and experimentally demonstrated [6,8]. The schematic is
shown in Fig. 2(a). This scheme uses an ancillary squeezed
state as a resource of nonlinearity. First, an arbitrary input
state is combined with an ancillary X-squeezed vacuum state
at a beam splitter with transmissivity 7y and reflectively R,
(Ty + Ry = 1). The p quadrature of one of the output beams
is measured by a homodyne detector. Finally, the measure-
ment outcome ¢ is fed forward to displace the p quadrature

of the other mode by gyg, where gy = \/Ty/Ry is an
amplifier gain. In the ideal limit of infinitely squeezed
ancilla, the input-output relation of this operation becomes
Xout = VRoxin and Poy = Pin/V/Ro in the Heisenberg
picture, where the subscripts “out” and “in” refer to the
output and input modes, respectively [5]. These relations
correspond to the squeezing operation §(— In v/Ry), and the
degree of squeezing can be controlled by choosing the beam-
splitter reflectivity R, and accordingly changing the gain gj.
In the actual experiment of squeezing pulsed input states [8],
an optical delay line of time At has to be introduced to
compensate the electric delay during the feedforward
operation, as depicted in Fig. 2(a).

The original circuit in Fig. 2(a) encodes quantum states in
spatial modes. Now we convert this circuit into a single-loop
circuit in Fig. 2(b) for time-bin encoding. In Fig. 2(b), we
assume that beam-splitter transmissivity 7'(z), phase shift
0(1), and gain g(¢) can be dynamically controlled. Below we
show that, by programmably controlling these system
parameters, an arbitrary single-mode Gaussian gate in the
form R(0,)S(—1In\/Ry)R(6;) can be performed in the loop
circuit. Suppose that input and ancillary squeezed pulses are
sent to the loop circuit with time separation of 7 [Fig. 2(b)].
First, the input pulse is picked up into the loop by setting the
beam-splitter transmissivity to 7(¢ = 0) = 1 [Fig. 2(c)].
The pulse entering the loop takes time 7 to circle around the
loop, and is subjected to a phase shift R(6,) before coming
back to the beam splitter again. Then a measurement-
induced squeezing gate is implemented in the loop circuit
[Fig. 2(d)]. After one cycle in the loop, the input pulse
coincides with the ancillary squeezed pulse at the beam
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FIG.2. (a)Measurement-induced squeezing gate [5]. (b) Single-
loop architecture for single-mode Clifford (Gaussian) gates.
(c)—(e) Procedure for an arbitrary single-mode Clifford gate.
We assume that the input pulse initially arrives at the VBS at
time ¢ = 0. (f) Programmable control sequence of system param-
eters. (g) Decomposition of an arbitrary n-mode Clifford gate [24].

splitter of 7(z) = T\,. The pulse leaving the loop is then
immediately measured by a homodyne detector, whose
output signal is fed forward with gain g, to the pulse inside
the loop. The electric delay At during the feedforward
operation can be compensated as long as the loop length 7 is
longer than At. This feedforward completes the squeezing
operation S(—1In+/R,). Finally, the pulse in the loop is
subjected to another phase shift R(6,) and exits the loop by
choosing T'(27) = 1 [Fig. 2(e)]. The whole control sequence
of the system parameters is summarized in Fig. 2(f), and
electrical programming of the sequence enables an arbitrary
single-mode Gaussian gate in the same experimental con-
figuration. If needed, displacement operations can be added
by just sending desired signals to the modulator instead of
the homodyne detector’s signal, though this is not explicitly
shown in Fig. 2(b). Therefore, this loop circuit provides a
sufficient set of operations for an arbitrary single-mode
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Clifford gate in a programmable fashion. The loop plays a
role of an optical delay enabling a beam-splitter operation
between different time bins as well as compensating the
electric delay in the feedforward operation. Since ancillary
squeezed states can be continuously and deterministically
supplied from an optical parametric oscillator, all these
operations can be performed deterministically with only one
squeezing resource and a single set of a homodyne detector
and feedforward electronics.

Multimode Clifford gates.—Next we extend the above
scheme from single-mode to multimode Clifford gates. As
shown in Fig. 2(g), it is known that any n-mode Clifford
(Gaussian) gate in CVs can be decomposed into a n-mode
linear interferometer, followed by the parallel applications
of a set of single-mode squeezing operations, followed by
another n-mode linear interferometer [24] (up to displace-
ment operations). Since the single-mode squeezing oper-
ation is already available in the loop circuit in Fig. 2(b), an
arbitrary n-mode linear interferometer for time-bin encod-
ing has to be introduced somehow.

An arbitrary n-mode linear interferometer can be decom-
posed into a sequence of at most n(n —1)/2 pairwise
beam-splitter operations [25]. Such a sequence of beam-
splitter operations can be implemented by embedding the
loop circuit in Fig. 2(b) into a larger loop of round-trip time
7’ [20,21], as shown in Fig. 1. The larger loop is controlled
by another two optical switches. When a string of n + m
pulses (n input and m ancillary squeezed pulses, m < n) are
sent to the circuit, “switch 17 lets all the pulses enter the
outer loop. This requires 7’ > (n + m)z. While these pulses
repeatedly circulate the outer loop, n input pulses pass
through the inner loop to implement a sequence of pairwise
beam-splitter operations. The programmable control
sequence of switches, beam-splitter transmissivity 7'(z),
and phase shifter 6(¢) enables the implementation of an
arbitrary n-mode beam-splitter operation.

Once the initial n-mode interferometer in Fig. 2(g) is
implemented, m ancillary squeezed pulses are used to
sequentially implement measurement-induced squeezing
gates by controlling “switch 2” and activating the feedfor-
ward operation (phase shifter 2 is not used at the moment).
Finally another n-mode interferometer is implemented to
complete the desired Gaussian gate. Note that the pulses
after the operation can be read out from the unused output
port of switch 1, as shown in Fig. 1. As a result, the loop
architecture in Fig. 1 enables an arbitrary multimode
Clifford gate deterministically based on a programmable
control sequence. By increasing the outer loop length 7/, our
architecture can deal with an arbitrary number of modes in
the same experimental complexity.

A non-Clifford gate.—In addition to the multimode
Clifford gates described above, at least one non-Clifford,
or non-Gaussian, gate is necessary and sufficient to com-
plete the CV universal gate set [26]. Non-Gaussian gates
require third or higher order nonlinear effects, such as the

Kerr effect, which are hard to implement directly on
quantum states. In contrast, a measurement-induced scheme
for one of the non-Gaussian gates, a cubic phase gate, was
proposed in Refs. [9,10,13]. In this scheme, cubic non-
linearity can be deterministically supplied with an ancillary
state which can be prepared probabilistically [27,28] and
stored in quantum memories [29]. Below we show that the
cubic phase gate proposed in Ref. [10] can be implemented
in the architecture of Fig. 1.

A cubic phase gate C(y) is defined as C7(y)2 C(y) = &
C'(y)p C(y) = p + 3y&%. Figure 3 shows the implemen-
tation of this gate in Ref. [10]. The input state is first
combined with an ancillary X-squeezed vacuum state
(ancilla 1) at a 50:50 beam splitter. One of the combined
modes is further combined with another ancillary state
[ dxexp(iy'x*)|x) (ancilla 2) at a 50:50 beam splitter, and
the two resultant modes are measured by homodyne
detectors HD-1 and HD-2. Before HD-2, the phase of
the pulse needs to be shifted by ¢p = arctan(3+/2y’q), where
q is the outcome of X measurement at HD-1. Finally, p
quadrature of the remaining mode is displaced by

V2y/ cos ¢, where y is the outcome of p measurement
at HD-2. In the limit of infinite squeezing and perfect
ancillary states, the input-output relation is given in the
Heisenberg picture by [10]

A
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and corresponds to S(In v/2)C(y'/2v/2). The unnecessary
squeezing gate can be canceled out by applying the
corresponding antisqueezing operation.

Once the input and two ancilla pulses are sequentially
fed to our architecture of Fig. 1 (n =1 and m = 2), the
same gate can be straightforwardly implemented by per-
forming beam-splitter operations, measurement, and feed-
forward in an appropriate order. We have to note that more
complicated control of the system parameters is necessary
compared to the previous Gaussian gates. First, the phase
shifter ¢ before HD-2 in Fig. 3 is implemented by phase
shifter 2 in Fig. 1, and the shifted amount nonlinearly
depends on the measurement outcome of homodyne
detection. In addition, the displacement in the last step

Ancilla-1

FIG. 3. Measurement-induced cubic phase gate in Ref. [10].
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requires a classical signal which nonlinearly depends on two
measurement outcomes obtained at different times. These
kinds of complicated controls are, however, implementable
by appropriately rewriting the program. Therefore, a cubic
phase gate can be deterministically implemented in our
architecture when necessary ancillae are injected into the
circuit. This non-Gaussian cubic phase gate, together with
already available multimode Gaussian gates, constitute the
universal gate set for CV quantum computation.

Hybrid approach.—All the above Clifford and non-
Clifford gates can be applied to any input state, let alone
qubits. Thus, by taking a hybrid approach combining qubit
encoding and CV operations, our architecture offers scal-
able and universal quantum computation for qubits. For
example, our architecture is compatible with a time-bin
qubit, which is a superposition of a single photon in either
of two pulses: |y) = a|1,0) + 4|0, 1). For this encoding,
any single-qubit operation can be directly performed in our
architecture with only beam-splitter operations on the two
pulses. Universal quantum computation also requires a
two-mode entangling gate, which can be realized with Kerr
interaction [30]. This interaction is also implementable in
our architecture by an appropriate sequence of only
Gaussian operations and cubic phase gates [31].

Furthermore, the hybrid approach enables fault-tolerant
quantum computation with almost minimum resources by
redundantly encoding a qubit in a large Hilbert space of a
single temporal mode. One important example in Ref. [13]
encodes a qubit in the logical basis |j;) = czlx =
V/7(2s + j)) (j = 0, 1). This qubit can be protected against
sufficiently small phase-space displacement errors by
ancilla-assisted quantum error correction (Fig. 4 in
Ref. [13]). Except for ancilla preparation, all the require-
ments for this error correction protocol, including quantum
nondemolition interaction (two-mode Gaussian operation)
between a qubit and an ancilla, and homodyne measurement
followed by a displacement operation, are already included
in our architecture. Note that fault tolerance in this scheme is
achievable even with nonideal qubit and CV cluster states
with finite squeezing [32]. This conclusion also holds true
for our architecture since it can create CV cluster states from
ancillary squeezed states [33] in the loop and follow the
same error-correction protocol in principle. The threshold
value of squeezing given in Ref. [32] is 20.5 dB. This means
that losses in the loop of our architecture must be at least
below 1% to keep the sufficient level of squeezing for fault
tolerance. These requirements are still higher than state-of-
the-art technology, considering the fact that the current
highest squeezing level is 15 dB [34]. However, the require-
ment for fault tolerance is likely to be satisfied in the near
future by further improvement of technology or error-
correction protocols. More comprehensive analysis of fault
tolerance, including the effect of finite squeezing and losses
in the loop, can be performed with the extension of Ref. [32]
and will be given in a future work.

Experimental viability.—Finally, let us consider the
feasibility of our architecture with current technology.
Measurement-induced squeezing gates in our architecture
was previously demonstrated in the configuration of Fig. 2(a)
for pulsed input states [8]. Although the measurement-
induced cubic phase gate in Fig. 3 has not been demonstrated
yet, recent progress in ancilla preparation [27,28] makes
its implementation within reach of current technology.
Conversion of these gates into the loop architecture in
Fig. 1 requires long (210 m) and low-loss optical delay
lines. Such delay lines have been developed in free space or
by using optical fibers in several experiments [17,35,36]. In
addition, the viability of loop-based beam-splitter operation
has been recently demonstrated in several experiments, such
as quantum walk [22] and boson sampling [23]. These
experiments demonstrate that fast dynamic control of optical
switches and beam-splitter transmissivity is possible while
preserving the coherence of quantum states. The demon-
strations described above show that all of the basic building
blocks of our architecture are already available.

Conclusion.—In conclusion, we showed that our quantum
computation scheme using measurement-induced CV gates
in a loop-based architecture provides the universal gate set
for both qubits and CVs. This architecture offers electrical
programmability of gate sequence and higher scalability, and
also enables fault-tolerant quantum computation with logical
qubits redundantly encoded in a large Hilbert space.
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