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Given a certain amount of entanglement available as a resource, what is the most efficient way to
accomplish a quantum task? We address this question in the relevant case of continuous variable quantum
teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement
and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be
simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement,
showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator.
We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a
two-mode squeezed state with finite energy, albeit with a larger entanglement. We then consider the
problem of teleporting single-mode coherent states with Gaussian-distributed displacement in phase space.
Performing a geometrical optimization over phase-insensitive Gaussian channels, we determine the
maximum average teleportation fidelity achievable with any finite entanglement and for any realistically
finite variance of the input distribution.
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Determining the ultimate performance of quantum tech-
nologies in the presence of limited resources is essential to
gauge their usefulness in the real world. Quantum telepor-
tation [1,2] enables the “disembodied transfer” of an
unknown quantum state from a sender to a remote receiver,
usually named Alice and Bob, respectively. To accomplish
this, they need to share a quantum resource, i.e., an entangled
state, and to classically communicate. Ideally, if the resource
is maximally entangled, Bob can retrieve an exact copy of
the input state. Unfortunately, this is unrealistic, especially
for continuous variable systems [3–5], where maximal
entanglement can be obtained only in the unphysical limit
of infinite energy [2,6]. It is, thus, important to identify the
most efficient teleportation schemes, which make optimal
use of limited quantum resources to achieve the largest
fidelity between input and output averaged over a specified
set of input states [7]. For discrete variable systems with
uniformly sampled pure input states, a relation between such
optimal fidelity and the entanglement of the resource was
found in Ref. [8]. This Letter solves such a problem in a
prominent continuous variable scenario.
A practical protocol for continuous variable teleporta-

tion, which employs a two-mode (finitely) squeezed state
as a quantum resource at the price of realizing an imperfect
teleportation, was proposed by Braunstein and Kimble
(BK) [9] and implemented in several experiments [10–12].
A characteristic feature of the BK protocol is that the input
and output states are connected by a Gaussian additive
noise channel [13]. Moreover, by simply introducing a
nonunit classical gain in the BK protocol [10,14–16], more
general effective Gaussian channels can be “simulated” by

teleportation, including quantum attenuators and ampli-
fiers. A natural question emerging in this context is the
following: Optimizing over all teleportation protocols and
general resource states, how much entanglement is neces-
sary to simulate a given Gaussian channel? A simple lower
bound is given by the entanglement of the so-called Choi
state associated to the channel [6,17–20]; such a bound is
achievable using resources with infinite mean energy. As
shown, in fact, in Refs. [6,18,20], any Gaussian channel can
be deterministically implemented through a BK protocol
exploiting the respective Choi state as a quantum resource.
In the first part of this Letter, we focus on single-mode

phase-insensitive Gaussian channels, which model typical
sources of noise in quantum optics [21–23]. We show that
almost all of them (but the quantum limited attenuator) can
be implemented by teleportation with more realistic re-
source states, having the same entanglement as the Choi
state but finite mean energy. Moreover, through a nonunit
gain BK teleportation based on pure two-mode squeezed
states (TMSSs) with finite energy yet with larger entangle-
ment, one can simulate all phase-insensitive Gaussian
channels but the identity.
In the second part of this Letter, we consider the concrete

problem of teleporting an alphabet of coherent states [24]
sampled from a phase-invariant Gaussian distribution
with finite variance. Maximizing over all phase-insensitive
Gaussian channels, we determine the optimal average
teleportation fidelity achievable as a function of the shared
entanglement and input variance. Our result generalizes
several previous studies partially addressing similar ques-
tions. For example, in Refs. [7,25–28], the fidelity was
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maximized over classical strategies (i.e., with zero shared
entanglement) identifying the classical benchmark for
different input sets. For a fixed entanglement, the optimal
average fidelity for teleporting coherent stateswas studied in
Refs. [17,29], albeit assuming an ideal flat distribution with
unbounded variance. The optimization of the most realistic
scenario given by a finite input variance remained hitherto
unsolved and is settled by the present Letter.
Gaussian states and Gaussian channels.—An m-mode

bosonic system [4,30–32] is usually described in terms of a
vector of quadrature operators R̂¼ðq̂1;p̂1;…;q̂m;p̂mÞ⊤ sat-
isfying the canonical commutation relations ½R̂j;R̂k�¼iΩjk,
withΩ ¼ iσ⊕m

y . Here and in the rest of thiswork, 1, σx, σy, σz
are the 2 × 2 identity and Pauli matrices, respectively.
Gaussian quantum states can be defined as Gibbs

ensembles of quadratic Hamiltonians and are fully char-
acterized by the first and second statistical moments of the
quadrature operators, i.e., the displacement vector d ¼ hR̂i
and the covariance matrix Vjk ¼ hfR̂j − dj; R̂k − dkgþi,
where f·; ·gþ is the anticommutator. In order for a symmetric
covariance matrix V to describe a physical state, it has to
satisfy the Robertson-Schrödinger uncertainty relation V ≥
iΩ [33]. For instance, in this notation, single-mode coherent
states jαi (with α ∈ C) [24] are minimum uncertainty
Gaussian states specified by d¼ð ffiffiffi

2
p

Reα;
ffiffiffi
2

p
ImαÞ⊤ and

V ¼ 1. The entanglement of any two-mode Gaussian
state with covariance matrix V can be quantified by
the logarithmic negativity [34–37] EN ¼ log ∥ρΓ∥1 ¼
maxf− log ~ν−; 0g, where ~ν− is the lowest symplectic eigen-
value of the covariance matrix ~V ¼ ð1 ⊕ σzÞVð1 ⊕ σzÞ
associated to the partially transposed state ρΓ. The mean
energy of an m-mode Gaussian state with zero first
moments, i.e., the expectation value of the noninteracting
quadratic Hamiltonian, can be easily computed from the
covariance matrix V of the state [31]. In units of ℏω, this is
given by n̄ ¼ ð1=mÞPm

k¼1hâ†kâkiρ ¼ ðTrV=m − 2Þ=4.
Gaussian channels are completely positive trace-

preserving maps which preserve the Gaussianity of quan-
tum states [4,21,30,32,38]. They can be represented (up to
additional displacements) by two matrices (X, Y), with
Y ¼ Y⊤, which act on the displacement vector and the
covariance matrix as

d → Xd; V → XVX⊤ þ Y; ð1Þ

and satisfy the complete positivity condition Y þ iXΩX⊤ ≥
iΩ. The latter, for single-mode Gaussian channels, reduces
to Y ≥ 0,

ffiffiffiffiffiffiffiffiffiffi
detY

p
≥ j1 − detXj. Moreover, single-mode

Gaussian channels for which
ffiffiffiffiffiffiffiffiffiffi
detY

p
≥ j detXj þ 1 are

entanglement breaking [22,23,39,40]; i.e., when acting on
one mode of any bipartite system, they always produce a
separable output state. These channels correspond to
classical measure-and-prepare protocols and, hence, can
be trivially simulated by Alice and Bob via classical

communication only. In this Letter, we will mainly focus
on phase-insensitive single-mode channels defined by

X ¼ ffiffiffi
τ

p
1; Y ¼ y1; ð2Þ

where τ and y are scalars representing transmissivity (or gain)
and added noise, respectively (in the notation ofRef. [40]). In
the plane (τ, y) illustrated in Fig. 1, we have, thus,

y ≥ j1 − τj ⇔ completely positive; ð3Þ

y ≥ 1þ jτj ⇔ entanglement breaking: ð4Þ

Wewill restrict to τ ≥ 0, which excludes phase-contravariant
channels. The channels on the lower boundary of the
completely positive region, i.e., with y ¼ j1 − τj, corre-
spond in particular to the quantum limited attenuator (also
known as pure loss channel) for 0 ≤ τ < 1 and to the

FIG. 1. Diagram of phase-insensitive single-mode Gaussian
channels in the (τ, y) plane based on the parametrization (2). The
white area corresponds to unphysical channels delimited by
Eq. (3). The shaded gray area corresponds to channels not
accessible by teleportation schemes with finite entanglement
EN ¼ 2r according to the bound (8). Channels above the (blue)
dotted line are entanglement breaking according to Eq. (4). The
colored contour plot depicts the average fidelity F̄ (12) asso-
ciated to each phase-insensitive channel for an input ensemble of
coherent states with phase space variance λ−1. Relevant channels
are highlighted as special points: (triangle) optimal teleportation
scheme (13); (circle) suboptimal teleportation scheme based on a
TMSS (16); (diamond) optimal measure-and-prepare strategy
achieving the classical benchmark (14). The (black) dashed and
(purple) solid lines represent the channels achievable through the
considered teleportation schemes by varying the entanglement
parameter 0 ≤ r < ∞. The diagram is a snapshot at r ¼ λ ¼ 0.5.
All the plotted quantities are dimensionless.
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quantum limited amplifier for τ > 1, with τ ¼ 1 denoting
the identity channel.
Continuous variable teleportation.—We now briefly

review the BK teleportation protocol [9], and we determine
the induced Gaussian channel connecting the input and
output modes. Assume that Alice and Bob share a generic
quantum resource consisting of a two-mode Gaussian
state with zero first moments and covariance matrix
VAB ¼ ð A

C⊤ C
BÞ, where A, B, and C are 2 × 2 real matrices,

and consider an unknown input state with displacement
vector din and covariance matrix Vin. Alice mixes the input
state with her part of the resource state through a balanced
beam splitter and measures via homodyne detection on each
mode the two commuting quadratures Q̂þ ¼ ðq̂inþ q̂AÞ=

ffiffiffi
2

p

and P̂− ¼ ðp̂in − p̂AÞ=
ffiffiffi
2

p
. Then, Alice classically com-

municates her measurement results (photocurrents) to
Bob who performs a displacement on his part of the shared
state: q̂B→q̂out¼q̂Bþg

ffiffiffi
2

p
Qþ, p̂B→ p̂out¼ p̂Bþg

ffiffiffi
2

p
P−.

Here, g > 0 is the gain parameter which is usually set to
g ¼ 1 when teleportation is based on maximally entangled
states. However, in general, a nonunit gain has been studied
[10,14–16] in the context of realistic resources. Once the
protocol is completed, the displacement vector and covari-
ance matrix of the output state can be computed using the
methods of Refs. [3,5,38,41] and are found to be

dout ¼ gdin;

Vout ¼ g2V in þ g2σzAσz þ gðσzCþ C⊤σzÞ þ B: ð5Þ

These formulas show that the nonunit gain BK protocol
induces a Gaussian channel with a diagonal gainmatrixX ¼
g1 and a noise matrix Y which depends on the covariance
matrix VAB of the resource. If we set VAB in block standard
form:

A¼ a1; B¼ b1; C¼−cσz; a;b;c∈Rþ; ð6Þ

then also the noise matrix induced by teleportation is
proportional to the identity, and the protocol is equivalent
to the phase-insensitive channel defined in Eq. (2), with
parameters

τ ¼ g2; y ¼ g2a − 2gcþ b: ð7Þ

Implementable phase-insensitive channels.—Here we
are interested in the inverse problem: we would like to
understand, given an arbitrary pair (τ, y), what covariance
matrix VAB can be used as a resource to simulate the
corresponding channel with a minimum amount of entan-
glement (quantified by the logarithmic negativity) and
possibly with finite energy. A similar problem, but using a
different entanglement measure and without focusing on the
energy requirement, has been considered in Refs. [20,42],
with fundamental implications for quantum communication.

Ifwe apply the channel (τ, y) to onemode of aTMSS, then, in
the limit of infinite squeezing, we get the Choi state [6,32]
associated to the channel. Its entanglement can be computed

[18] giving EðChoiÞ
N ¼ maxf0;− log½y=ð1þ τÞ�g. Consider a

resource state identified by VAB having finite entanglement
EN ¼ 2r, with r ≥ 0. Since the total entanglement shared
between Alice and Bob cannot increase under any telepor-

tation process, one must necessarily have 2r ≥ EðChoiÞ
N

[17,18,20]. The latter bound defines the accessible region
(complementary to the gray area in Fig. 1) in the space of
phase-insensitive channels:

y ≥ e−2rð1þ τÞ: ð8Þ

This, intersected with Eq. (3), identifies the region of
Gaussian channels implementable with 2r units of entangle-
ment; or equivalently, the channels that, when applied locally
to one mode of a two-mode system, always lead to an output
withEN ≤ 2r, generalizing the entanglement-breaking con-
dition (4) (dotted line in Fig. 1), which is recovered for
vanishing r.
The bound in Eq. (8) can be saturated by using the Choi

state of the channel itself as a quantum resource [6,20] with
the gain set to g ¼ ffiffiffi

τ
p

. This solution, however, though
elegant, is unrealistic for practical purposes because con-
tinuous variable Choi states have infinite energy. Here,
instead, we find that there exists a realistic class of optimal

resource states with minimum entanglement 2r ¼ EðChoiÞ
N

and finite mean energy such that, with g ¼ ffiffiffi
τ

p
, they can

simulate all physical channels at the boundary of the
accessible region [where Eq. (8) holds as an equality] with
the exclusion of only one point, i.e., the quantum limited
attenuator. These optimal resource states in standard form
(6) are found by fixing c such that EN ¼ 2r, and a such
that Eq. (8), with y given by Eq. (7), holds with equality

a ¼ bþ e−2rðτ − 1Þ
τ

; c ¼ b − e−2rffiffiffi
τ

p ;

b ≥
τ − e−2r tanh r
τ − tanh r

; ð9Þ

where the condition given on b is necessary to ensure that
the state is physical. In this class of states, we choose those
with minimal mean energy n̄AB ¼ ðaþ b − 2Þ=4 given by
the value of b which saturates the inequality in Eq. (9).
These correspond to asymmetric squeezed thermal states
with a unit symplectic eigenvalue and maximal EN among
all two-mode Gaussian states with the same marginals a, b
[36,43]. Notice that the lower bound on the coefficient b in
Eq. (9) (and, hence, a) diverges only at the extreme point
ðτ ¼ tanh r; y ¼ 1 − tanh rÞ corresponding to the quantum
limited attenuator. For larger values of τ, including the
opposite extreme represented by the quantum limited
amplifier, all channels along the boundary saturating
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Eq. (8) can be simulated using the states (9) with finite
mean energy n̄AB and minimum entanglement EN ¼ 2r
(see Fig. 1).
Finally, it is natural to ask how much entanglement r0 is

necessary instead to simulate a phase-insensitive channel
(τ, y) exploiting the more familiar pure TMSS as a
teleportation resource. This corresponds to fix a ¼ b ¼
cosh 2r0 and c ¼ sinh 2r0 [30]. From Eq. (7), we have g ¼ffiffiffi
τ

p
and, for all non-entanglement-breaking values of the

noise parameter j1 − τj ≤ y ≤ 1þ τ, there always exist two
solutions for r0, with

r0 ¼ 1

2
cosh−1

 
yð1þ τÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ½y2 − ð1 − τÞ2�

p
ð1 − τÞ2

!
ð10Þ

being the one corresponding to the smallest entanglement
and indirectly the smallest energy n̄AB ¼ sinh2ðr0Þ required
to simulate the channel via a TMSS. Quite surprisingly,
in this case the energy (and the entanglement) stays finite
even for the quantum limited attenuator and diverges only
for the identity map (τ ¼ 1, y ¼ 0). However, simulation
via TMSSs requires more entanglement compared to using
the optimal states (9): substituting y ¼ e−2rð1þ τÞ into
Eq. (10), one gets indeed r0 > r.
This concludes the first part of this Letter, whose aim

was to determine optimal teleportation protocols for sim-
ulating phase-insensitive Gaussian channels with finite
resources. In the following, we will exploit the previous
results to solve an optimization problem with significant
practical implications.
Optimal teleportation fidelity.—The success of a tele-

portation protocol can be quantified in terms of the fidelity
between input and output states, which for a pure input
jψ ini is defined as F ¼ hψ injρoutjψ ini [7]. For a coherent
input state jαi, the latter is proportional to the Q function
[44,45] of the output state evaluated at the input complex
amplitude α: F ¼ hαjρoutjαi ¼ πQoutðαÞ. Here, we are
interested in the realistic scenario [7,25] in which Alice
wants to teleport an unknown input coherent state jαi, with
displacement α sampled from a Gaussian phase space
distribution Pλ

inðαÞ ¼ ðλ=πÞe−λjαj2 . This prior corresponds
to the P function [24,45] of a thermal ensemble with input
mean energy n̄in given by the variance λ−1. The average
teleportation fidelity over the input ensemble can be
expressed as the integral overlap of the two functions:

F̄ λ ¼ π

Z
C
d2αPλ

inðαÞQoutðαÞ: ð11Þ

Now let us consider that Alice and Bob share a two-mode
resource statewith fixed entanglementEN ¼ 2r. Wewant to
optimize the average fidelity over all possible Gaussian
phase-insensitive teleportation schemes. This task appears
prima facie quite complex; however, thanks to the previous

analysis, we can limit the optimization over the two-param-
eter space (τ, y) of accessible phase-insensitive Gaussian
channels with the entanglement constraint (8) without
delving into the specifics of the teleportation protocol.
The action of any such channel on a coherent input state
produces, according toEqs. (1) and (2), a thermal output state
with displacement dout ¼ ð ffiffiffiffiffi

2τ
p

Reα;
ffiffiffiffiffi
2τ

p
ImαÞ⊤ and covari-

ance matrixVout ¼ ðyþ τÞ1. The correspondingQ function
evaluated at the input phase space point α is Qλ

outðαÞ¼
½2e−2ð1− ffiffiτp Þ2jαj2=ðyþτþ1Þ�=½πðyþτþ1Þ�. Substituting this into
Eq. (11), we get the average teleportation fidelity

F̄ λðτ; yÞ ¼ 2λ=½2ð1 − ffiffiffi
τ

p Þ2 þ λð1þ yþ τÞ�: ð12Þ

The previous expression depends nontrivially on the trans-
missivity parameter τ, while, as expected, it is monotonically
decreasing with the noise parameter y (see Fig. 1 for a
contour plot). For a fixed entanglement EN ¼ 2r, y is lower
bounded by Eq. (8), and so the maximum F̄ λ must be on the
line y ¼ e−2rð1þ τÞ delimiting the set of implementable
channels from the unaccessible region (gray area in Fig. 1).
Inserting this into Eq. (12) and optimizing with respect
to τ within the completely positive region (3), we get
τopt ¼ max ftanh r; ½e2r=ðer þ λ cosh rÞ2�g. The corre-
sponding optimal average fidelity is finally:

F̄ λ
optðrÞ¼

8>>><
>>>:

λ

λþð1− ffiffiffiffiffiffiffiffiffiffiffi
tanhr

p Þ2 ; tanhr≥ e2r

ðerþλcoshrÞ2 ;

erð1þλþ tanhrÞ
2erþλcoshr

; otherwise:

ð13Þ

The associated optimal teleportation channel denoted by a
triangle in Fig. 1 can be simulated via a nonunit gain BK
protocol based on the class of resource states of Eq. (9).
However, when the first case of Eq. (13) holds, the optimal
channel is a quantum limited attenuator for which the needed
energy diverges, as previously discussed. When instead the
second case holds, which happens for sufficiently large input
variance λ−1, the optimal channel can be implemented with
finite energy.
Discussion.—We now discuss some implications of our

general formula for the optimal average fidelity given in
Eq. (13). In particular, we are going to recover, as special
cases, a number of results obtained in previous literature.
The first special case that we consider is r ¼ 0 (see

diamond in Fig. 1), that is, no shared entanglement, for
which we get

τopt¼ð1þλÞ−1; yopt¼1þτopt; F λ
optð0Þ¼

1þλ

2þλ
; ð14Þ

yielding the maximum fidelity achievable with any mea-
sure-and-prepare strategy, i.e., the classical benchmark
derived in Ref. [25]. Moreover, for r ¼ 0, the two-mode
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state (9) reduces to the vacuum, and the BK protocol is
equivalent to a heterodyne detection at Alice’s site followed
by a repreparation of a coherent state at Bob’s site with
g ¼ ð1þ λÞ−1. This is exactly the optimal “cheating”
strategy originally proposed in Ref. [7].
The second special case is when λ → 0, corresponding

to the teleportation of uniformly distributed coherent
states (i.e., with unbounded input mean energy). In this
limit, we get

τopt¼ 1; yopt¼ 2e−2r; F̄ 0
optðrÞ¼ ð1þe−2rÞ−1; ð15Þ

consistent with the results obtained in Refs. [17,29].
Moreover, for λ → 0, the optimal resource (9) reduces to a
pure TMSS recovering the standard BK scheme with unit
gain [9].
In general, for arbitrary values of λ and r, one may

compare the optimal teleportation strategy derived in this
Letter [Eq. (13)] with a conventional BK scheme based on a
pure TMSS and optimized gain g [10,14–16]. Using Eqs. (7)
and optimizing Eq. (12)with respect to τ ¼ g2, we get gopt ¼
ð2þ λ sinh 2rÞ=ð2þ λþ λ cosh 2rÞ and

F̄ λ
TMSSðrÞ ¼ ðsech2rþ λÞ=ð2þ λ − 2 tanh rÞ; ð16Þ

corresponding to the circle in Fig. 1. One sees that the
teleportation based on a TMSS never achieves the optimal
Gaussian strategy (triangle) for any λ > 0, despite approxi-
mating it well and beating the classical benchmark.
Precisely, one has F̄ λ

optðrÞ ≥ F̄ λ
TMSSðrÞ ≥ F̄ λ

optð0Þ, where
the first inequality is saturated for λ → 0 or r ¼ 0, while the
second one only for r ¼ 0. Therefore, if one takes into
account only the shared entanglement, pure TMSSs are
suboptimal for teleporting coherent states with nonuniform
distribution. On the other hand, teleportation with a TMSS
may still represent an experimentally practical solution, e.g.,
when tanh r ≥ e2r=ðer þ λ cosh rÞ2 [see Eq. (13)], in which
case, the energy of the optimal state (9) diverges, while it is
finite for a TMSS.
Conclusions.—In this Letter, we determined a class of

realistic continuous variable teleportation protocols that are
optimal for simulating phase-insensitive Gaussian channels
employing a minimum amount of shared entanglement.
Excluding the pathological case of the quantum limited
attenuator, our teleportation schemes rely on feasible re-
source states with a finite mean energy and are, thus, quite
appealing for practical applications in quantum communi-
cation [4,20,42,46,47].
By exploiting such effective equivalence between

Gaussian channels and teleportation schemes, we considered
the relevant task of teleporting an alphabet of single-mode
coherent states sampled from a Gaussian phase space dis-
tribution with finite variance [7] via a two-mode Gaussian
resource with finite entanglement [36]. We determined the
optimal average fidelity analytically, solving a long-standing
open problem in continuous variable quantum teleportation

[5,30] and recovering many previous results as special cases
[7,17,25,29].
Future generalizations of our analysis may include the

identification of finite energy resource states and effective
teleportation protocols for simulating phase-sensitive and
possibly multimode Gaussian channels. Another possible
direction concerns the optimal use of steering [48], rather
than entanglement, as a resource for secure teleportation
[49–51].
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