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Using first-principles-based simulations merging an effective Hamiltonian scheme with scaling,
symmetry, and topological arguments, we find that an overlooked Berezinskii-Kosterlitz-Thouless
(BKT) phase sustained by quasicontinuous symmetry emerges between the ferroelectric phase and the
paraelectric one of BaTiO3 ultrathin film, being under tensile strain. Not only do these results provide an
extension of BKT physics to the field of ferroelectrics, but they also unveil their nontrivial critical behavior
in low dimensions.
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In two-dimensional systems with continuous symmetry
and short-range interactions, strong fluctuations prevent the
formation of long-range order [1,2], and rather than a
spontaneous symmetry breaking, a topological phase tran-
sition driven by the unbinding of vortex-antivortex pairs
can occur, the so-called Berezinskii-Kosterlitz-Thouless
(BKT) transition [3,4]. It is an infinite-order phase
transition [5] and is paradigmatically captured by the
two-dimensional XY model that has attracted much interest
for it astutely describes, amongst others, the physics of
superfluid helium films [6], superconducting films [7–9],
the Coulomb gas model [10], Josephson junction arrays
[11], and nematic liquid crystals [12]. Ferroelectrics on the
other hand, which constitute an important class of materi-
als, are prima facie not expected to exhibit BKT transition,
owing to their discrete symmetry stemming from the cubic
anisotropy of both the lattice and the ferroelectric inter-
actions, which include the long-range dipolar ones.
Whether the BKT behavior would be robust against
the introduction of symmetry-breaking ferroelectric
anisotropy remains unsettled. Here we show, using
Monte Carlo simulations of a first-principles-based effec-
tive Hamiltonian scheme as well as scaling, symmetry, and
topological arguments, that an intermediate critical BKT
phase underlain by quasicontinuous symmetry emerges
between the ferroelectric phase and the disordered para-
electric one in tensily strained thin film of BaTiO3, a
prototypical ferroelectric. We find that this overlooked
intermediate phase supports quasilong-range order
reflected in the algebraic decay of the correlation function
and sustained by the existence of neutral bound pairs of
vortices and antivortices, in accordance with defining
characteristics of a BKT phase. Its lower and upper critical
temperatures, Tc and TBKT, are associated with the con-
densation and unbinding of vortex-antivortex pairs, respec-
tively. Moreover, we also find that upon reaching TBKT, the
correlation function’s critical exponent acquires a value

close to the theoretical predictions 0.25 of the XY model
[3,4], further indicating that the upper transition is likely to
be of the BKT type. Our results therefore highlight the
subtle, fundamental richness of low-dimensional ferro-
electrics and widen the realm of BKT transitions.
The situation described by the highly idealized two-

dimensional XY model [3,4] conventionally only applies
to two-dimensional degenerate systems with local interac-
tion, and is scarcely met in experiments involving ferro-
magnetic and ferroelectric systems. In these systems, the
presence of a dipole-dipole interaction, nonlocal in nature,
significantly reduces fluctuations, thereby altering the low-
temperature properties of the XY model [13]. Indeed, it is
well known that the dipolar interaction tends to stabilize the
long-range order against thermal fluctuations, and the
ground state may thus be spontaneously polarized
[14,15], or acquire various structures. However, while the
low-temperature properties substantially depend on the
dipolar interaction, in the high-temperature regime this
interaction is of a lesser significance [16], and its contribu-
tion demonstrated to be irrelevant in the treatment of the
dipolar XY model [13,15–18]. Furthermore, in an aniso-
tropic variant of the two-dimensional XY model with short-
range interactions [19,20], it was found that the introduction
of a small effective anisotropy had no effect in altering the
BKT transition. Hence there appears to be a breach for
investigating ferroelectrics such as barium titanate, wherein
there exists a natural propensity for disorder, reflected for
instance in the order-disorder component of its phase
transition [21,22]. The easy displacement of titanium ions
from the centrosymmetric position, occurring even in the
cubic phase, along the degenerate rhombohedral low-
symmetry directions renders its higher-symmetry tetragonal
and orthorombic ferroelectric phases only partially ordered
[21,23], i.e., still subject to fluctuations. In reduced dimen-
sionality, one may thus inquire whether the interplay
between the geometrical enhancement of these intrinsic
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fluctuations and its necessary alteration by anisotropy and
long-range dipolar interactions would allow for a subtle
manifestation ofBKT physics in ferroelectric thin films (see
the section “Mixed order-disorder/displacive behaviors
and associated precursor effects" in Supplemental
Material [24]).
During the past decade, the physical properties of thin

ferroelectric films have been the subject of intense inves-
tigation, in part due to the prospect of using such films in
microelectronics, such as nonvolatile random access
memories [40], but also due to their novel and unique
physical properties that single them out from their three-
dimensional counterparts. Recent experimental develop-
ments have brought low-dimensional ferroelectric systems
within reach in laboratory, thereby rendering them particu-
larly interesting for exploring new phenomena, addressing
fundamental questions, and testing the reliability of
numerical predictions. In order to gain insight into their
critical properties, we simulate thin films made of BaTiO3

under open-circuit electrical boundary conditions, grown
along the [001] pseudocubic direction (chosen to be the z
axis), and Ba-O terminated. Such films are mimicked by
L × L × h supercells that are periodic along the x and y
axes (which lie along the [100] and [010] pseudocubic
directions, respectively), and finite along the z axis (which
corresponds to the [001] direction). We consider a thick-
ness h of three unit cells corresponding to 11.7 Å, and
investigate several lateral sizes of L ¼ f24; 26; 28; 30g unit
cells. We subject the film to tensile strain (∼3%) mimicking
the effect of a substrate with a notably larger lattice
parameter. Interestingly, anisotropically stressed perovskite
crystals are known to exhibit phase diagrams with interest-
ing complexities and can display a variety of types of
critical behavior [41,42]. The considered supercell is
depicted in Fig. 1(a). The total energy of the film, used
to predict its properties through extensive Monte Carlo
simulations over at least 14 × 106 sweeps, is described in
the methods section of Supplemental Material [24].
In Fig. 1(b), we show the distribution of local dipole

Cartesian components at 25 K within a 30 × 30 × 3 super-
cell. It is therein seen that due to strong tensile strain, local
dipole moments are confined to the film plane, and thus
polarization can be regarded as a two-component order
parameter. Note that the macroscopic spontaneous polari-
zation is numerically found to lie along a h110i pseudo-
cubic direction for any temperature below the Curie point
of 539 K. Calculating the contribution of the interplane
coupling to the total energy of the system, we find that it
does not exceed 4%. Therefore, due to the weak interplane
coupling, dipoles belonging to different planes are uncor-
related and the investigated ultrathin film geometry can be
considered as effectively two dimensional. The assessment
of the order of the ferroelectric phase transition in tensily
strained BaTiO3 thin film is conducted using the Wang-
Landau algorithm [43,44], which enables accessing the

density of states from which a free-energylike quantity can
be calculated. While for discontinuous phase transitions,
the free energy F versus the internal energy E features a
double-well structure, at criticality and for continuous
transitions, only a single minimum is present. Figure 1(c)
indicates that the considered BaTiO3 system falls in the
latter case in vicinity of the Curie point, in accordance with
Landau theory [45], and with allowance for scaling analysis
[20]. Invoking finite-size scaling arguments enables the
determination of the extent of the intermediate critical BKT
phase that we find ranging between Tc ∼ 539 K and an
upper critical temperature, TBKT ∼ 545 K (see the section
“Scaling analysis and intermediate critical phase” in
Supplemental Material [24]).
One of the features mirroring the uniqueness of the BKT

phase lies in the quasilong-range order it can sustain. This
quasilong-range ordered phase is characterized by the slow
algebraic decay of the order parameter correlation function
and its continuously varying critical exponent η [4,20]. This
algebraic behavior is similar to that of an isolated critical
point while not being confined to a single temperature, and
the BKT phase can thus be regarded as a phase consisting
of critical points, distinct from the high-temperature dis-
ordered phase with rapid exponential decay of the corre-
lation function, yet weaker than a truly long-range ordered
one. From BKT theory [4], it is expected that quasilong-
range order onsets at TBKT and that it is marked by
ηðTBKTÞ ¼ 0.25. We therefore inquire into the behavior
of the in-plane two-point disconnected correlation function
[46] in the considered BaTiO3 system. Results indicate that
within the identified intermediate phase, the correlation
function is best fitted into a power-law falloff [inset of
Fig. 2(a)], while for higher temperatures, it is the

(a)

(b) (c)

FIG. 1. (a) Schematic view of the considered supercell. (b) Dis-
tribution of local dipole components at 25 K for 30 × 30 × 3
BaTiO3 thin film under 3% tensile strain. (c) Free-energylike
quantity versus internal energy (in Hartree) of the 30 × 30 × 3
BaTiO3 supercell under 3% tensile strain at and around TC.
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exponential form that best captures the rapid decay of the
correlation, as is typical of a disordered, paraelectric phase
[inset of Fig. 2(b)]. Extracting the values of η and ξ from
power-law and exponential fits to the disconnected corre-
lation function, we obtain an estimate of their temperature
dependence. It is seen in Fig. 2(a) that the temperature at
which the predicted 0.25 value of the critical exponent η of
the correlation function is reached falls in close vicinity of
the previously estimated TBKT ∼ 545 K, in agreement with
the BKT picture [4] (see the “Scaling analysis and
intermediate critical phase” section in Supplemental
Material [24]). Moreover, as shown in Fig. 2(b), the
expected exponential divergence of the correlation length
ξ upon reaching BKT from above [4] is indeed observed in
our simulations.
The above gathered results entail the existence of an

intermediate critical BKT phase in tensily strained BaTiO3

thin film, separating the ferroelectric phase from the
disordered one, and characterized by quasilong-range order
and the absence of symmetry breakdown. The three-phase
structure exhibited by the considered dipolar system can be
further qualitatively evidenced through the consideration of

dipolar fluctuations, whose role is exacerbated by the
reduced dimensionality. Figure 3 shows the symmetrized
probability distribution of local dipole moments [47] and
points to three phases with distinct topologies. Upon
decreasing temperature, the system transits from a uniform
distribution around 0, characteristic of a disordered state at
high temperatures [Fig. 3(c)], to four isolated spots,
indicative of a fourfold-degenerate ground state [Fig. 3(a)],
through an approximate continuous rotational symmetry
reflected in a nearly annular distribution at intermediate
temperatures [Fig. 3(b)]. In this intermediate regime,
dipoles acquire nonzero magnitude while retaining their
fluctuations, yielding a distribution with ring topology
whose slight distortion reflects the anisotropy of the
underlying square lattice. Hence, while the critical behavior
is usually determined by the range of interactions, spatial
dimensionality, and inherent symmetry of the Hamiltonian,
in some cases such as the one considered here, at criticality,
a higher, quasicontinuous symmetry of the discrete order
parameter can arise, rendering the associated critical
behavior richer than expected [48,49]. Indeed, while the
fourfold anisotropy is relatively irrelevant in the intermedi-
ate critical BKT phase where the two-dimensional XY
model properties are recovered and an approximate con-
tinuous symmetry is observed, it reasserts itself suppressing
fluctuations and restoring the fourfold rotational symmetry
at low temperatures. It is primarily interesting to note that
this critical phase with emergent continuous symmetry is
reminiscent of the intermediate BKT phase between the
low-temperature ordered phase and the high-temperature
disordered phase of the square planar rotator model with
small fourfold symmetry-breaking field [50] (see the
section “Interplay between isotropy and anisotropy” in
Supplemental Material [24]).
A salient feature of the BKT transition is its intricate

relation with topological excitations, namely, vortices and
antivortices point defects [4]. The seminal heuristic argu-
ment of Kosterlitz and Thouless points to a subtle loga-
rithmic competition between energy and entropy of defects,
the balance point of which, marked by TBKT, insulates two
different modes of their behavior [4]. Below this transition
temperature, lone defects are inhibited due to their loga-
rithmically divergent energywith the system size, and hence
vortices or antivortices are expected not to occur in isolated
form, but rather within tightly bound vortex-antivortex pairs

(a)

(b)

FIG. 2. Evolution with temperature, for L ¼ 30, of the in-plane
two-point correlation function exponent η (a) and the correlation
length ξ (b) as determined from fit to spatial correlation with
power and exponential laws, exemplified by the insets of (a) and
(b), respectively. The red line in (b) corresponds to an exponential
fit to the data points.

FIG. 3. Temperature evolution of the symmetrized probability
distribution of the in-plane components of local dipole moments
in a L ¼ 30 supercell.
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as local excitations, due to the finite pair energy scaling with
its radius rather thanwith the system size. These bound pairs
appear topologically neutral from a large-scale perspective,
as they confine and mutually cancel their orientational
disturbance, thereby allowing for algebraic decay of corre-
lations and quasilong-range order. As temperature is raised,
the number of pairs increases and larger ones start forming,
withinwhich the interaction of defects is subject to screening
by other smaller pairs that lie in between. These loosened
pairs effectively unbind at TBKT, whereupon entropy bal-
ances the interaction and independent free defects occur,
causing correlations to decay exponentially in the high-
temperature phase. The relevance of defects in establishing
the BKT transition is hence crucial, and their very existence
anchors in the nontriviality of the fundamental homotopy
group (π1) of the underlying circle topology (S1 of the XY-
model symmetry group, π1ðS1Þ ¼ Z, where Z is the group
of integers). On a lattice, such defects can thus be identified
through a topological invariant or discrete winding number
k ∈ Z [51,52], measuring the accumulated angular variation
of vectors upon circulating with a given orientation along
elementary plaquettes composing the square lattice.
Whenever vectors process by þ2π (−2π), the plaquette
encloses a vortex (antivortex) with k ¼ þ1 (k ¼ −1).
Notably, the topology of the emergent quasicontinuous
symmetry exhibited by tensily strained BaTiO3 thin film
at intermediate temperatures [Fig. 3(b)] is topologically
equivalent, or homeomorphic, to the circle S1 topology
underlying the O(2) symmetry group of the XY model,
hence endowing defects with topological protection against
simple perturbations in the considered system [53]. We thus
undertake the examination of the behavior of defects by
characterizing the topological properties of the two-dimen-
sional cross-sectional polarization field. We find that while
such defects are absent deep in the ferroelectric phase, they
condensate in close vicinity of Tc in the form of strongly
coupled vortex-antivortex pairs [Fig. 4(a1)], marking the
breakdown of long-range order, and the accommodation of
quasilong-range ordering instead. Indeed, winding numbers
are additive, and the two oppositely charged defects within
pairs compensate each other, such that the resulting texture
can be immersed in a uniformbackground, yielding a power-
law decay of dipolar correlations [inset of Fig. 2(a)].We note
that while the existence of an odd number of vortices or
antivortices is prohibited by the condition of zero overall
vorticity at stake in the considered system with periodic
boundary conditions, the generation by thermal fluctuations
of such pairs is both allowed topologically and favored
energetically by short-range interactions between first and
second nearest neighbors. The mean vortex-antivortex
separation within a pair, or pair radius r, is found not to
exceed around one lattice spacing and is significantly
smaller than the mean separation between pairs [Fig. 4(a1)].
As TBKT is approached from below, the number of pairs
increases, and loosely bound pairs start occurring

[Fig. 4(a2)]. Ensuingly, an unbinding onsets just above
TBKT, whereupon pairs with radius comparable to the mean
separation between pairs begin to appear [Fig. 4(a3)]. This
preliminary insight signals proliferation and unbinding of
pairs as T increases through TBKT, and is in qualitative
agreement with the BKT picture [4,54]. To better support
these observations, we examine the defect configurations
and compute the evolution with temperature of the average
vortex-antivortex pair radius r [Fig. 4(b)]. We find that r
grows rapidly as T increases, which confirms the unbinding
of vortex-antivortex pairs. At higher temperature, the curve
decreases due to defects proliferation, which raises the
probability of a defect having a neighboring antidefect.
We next inquire into the temperature dependence of the
density ρ of pairs, and find that bound vortex-antivortex
pairs are concomitant with low defect concentration. In the
corresponding temperature regime, the density of pairs is
expected to be governed by a Boltzmann factor involving
the chemical potential 2μ of a vortex-antivortex pair,
ρ ∼ exp½−2μ=ðT=TBKTÞ�. Figure 4(c) shows ln ρ versus
the inverse reduced temperature. As can be seen for low
temperatures, ln ρ is proportional to TBKT=T with the slope

(a1)

(b)

(c)

(a2)

(a3)

FIG. 4. (a) Spatial distribution of vortices (blue points) and
antivortices (red points) overlaid on cross-sectional dipolar
configuration for L ¼ 30 at (a1) 540 (intermediate BKT phase),
(a2) 545 (∼TBKT), and (a3) 550 K (paraelectric phase). (b) Evo-
lution of the average vortex-antivortex pair radius r with reduced
temperature T=TBKT. The dashed curve is a guide for the eye.
(c) Evolution of the logarithm of the average vortex-antivortex
pairs density ρ with the inverse reduced temperature. The straight
line is the linear fit to low-temperature data.
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being−10.49� 0.01, which is remarkably close to the value
of 2μ ¼ 10.2 that is expected for creating a vortex-antivortex
pair of defects separated by unit distance in the continuum
limit [4] in the BKT phase. The agreement between our
obtained chemical potential in the dilute limit [Fig. 4(c)],
which conditions the probability of appearance of a vortex-
antivortex pair, and that predicted for the two-dimensional
XY model can be apprehended through the fact that the
contribution of the dipolar interaction, despite its seeming
potential importance, has been analytically demonstrated to
be irrelevant to the nature of the BKT transition within a
dipolar variant of the XY model [16–18], in which the
characteristic logarithmic interaction of defects within a pair
was shown to be restored. While large chemical potential
supports a dilute phase of defect pairs, one can see that for
higher temperatures the slope significantly decreases, indi-
cating smaller chemical potential, as it becomes thermally
easier to create very many pairs (the presence of which
decreases the free energy by increasing the entropy), leading
to increased screening and effective dissociation upon
reaching the paraelectric phase.
In summary, our numerical simulations provide evidence

for an additional intermediate BKT phase in tensily strained
BaTiO3 thin film. We find that, due to an effectively
reduced spatial dimensionality and a lessened number of
dominantly contributing polarization components, the tran-
sitional region of tensily strained BaTiO3 is enhanced into a
critical phase exhibiting defining BKT features. In contrast
with short-range isotropic systems, the anisotropic dipolar
interactions ineluctably drive ferroelectric long-range
order, thereby endowing the system with a three-phase
structure: a truly ordered ferroelectric phase, a quasilong-
range ordered phase substantiated by an algebraic decay of
spatial correlations and supported by an emergent continu-
ous symmetry that allows for stable topological excitations
to condense in the distortion-confining form of vortex-
antivortex bound pairs, and a disordered, paraelectric one,
with exponentially falling correlations.
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