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In-plane hole g factors measured in quantum point contacts based on p-type heterostructures strongly
depend on the orientation of the magnetic field with respect to the electric current. This effect, first reported
a decade ago and confirmed in a number of publications, has remained an open problem. In this work, we
present systematic experimental studies to disentangle different mechanisms contributing to the effect and
develop the theory which describes it successfully. We show that there is a new mechanism for the
anisotropy related to the existence of an additional Bþk4−σþ effective Zeeman interaction for holes, which is
kinematically different from the standard single Zeeman term B−k2−σþ considered until now.
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A quantum point contact (QPC) is a narrow quasi-one-
dimensional (1D) constriction linking two two-dimensional
(2D) electron or hole reservoirs. Experimental studies of
QPCs started with the discovery of the conductance
quantization in steps of G0 ¼ 2e2=h [1,2]. The steps are
due to the quantization of transverse channels [3]. Effects of
many-body correlations in QPCs were identified by a “0.7-
anomaly” in the conductance, an enhancement of the g
factor in the 1D limit [4], and by a zero bias anomaly [5]. G
factors in n-type QPCs have been measured in numerous
experiments; a relatively recent one is reported in Ref. [6].
The in-plane electron g factor in a QPC takes the same

value for any direction of the in-plane magnetic field. Even
in InGaAs, which has appreciable spin-orbit coupling, no
in-plane g-factor anisotropy has been observed [7].
Contrary to this, measurements for holes in QPCs based
on GaAs p-type heterostructures indicate a huge
anisotropy. All previously reported values of the g factor
for magnetic fields applied perpendicular to the QPC are
consistent with g⊥ ¼ 0 within experimental error, while the
g factor gjj for the parallel direction is nonzero [8–10].
Regardless of numerous studies, the g-factor anisotropy

effect in QPCs remains unclear. One mechanism to explain
the g-factor anisotropy was suggested in Ref. [9]. This
mechanism is based on the crystal anisotropy of the cubic
lattice. While it is not negligible, the contribution of this
mechanism is too small to explain the observed anisotropy.
In this work, we identify a new mechanism for the

g-factor anisotropy unrelated to the crystal lattice. It is
instructive to use classification in powers of crystal
anisotropy η defined below. The new mechanism is leading
in η and the mechanism [9] is subleading. The new

mechanism is negligible at very low hole densities.
However, at real physical densities it is the major
anisotropy mechanism. Previous measurements were per-
formed in 2D hole systems formed at a single hetero-
junction [8,9], which can be modeled as a triangular
potential well. There is also a measurement with an
asymmetric quantum well [10] which can be modeled as
a square potential with an electric field along the z axis. The
z axis is perpendicular to the plane of the 2D hole system.
The z asymmetry results in the cubic Rashba spin orbit
interaction (SOI) [11–14]. We will show that there are two
major mechanisms for g⊥ suppression, (i) the g1 − g2
mechanism, (ii) the Rashba mechanism. To disentangle
the mechanisms, in the present work we perform measure-
ments of QPC g factors for quantum well GaAs hetero-
structures which allows us to tune the Rashba SOI. By
reducing the Rashba SOI we observe a nonzero g⊥ for the
first time (although the anisotropy is still large, with
gjj ≫ g⊥). In all previous measurements the strong asym-
metry of the heterostructure, or the high hole density,
resulted in a very strong Rashba SOI, so both mechanisms
contributed to suppression of g⊥. The Rashba mechanism is
not significant in our devices. (The mechanism is explained
in the very end of the Letter and discussed in detail in the
Supplemental Material D [15].) The hole gas is confined in
a 15 nm rectangular quantum well. An external electric
field Ez is superimposed on the well using an in situ back
gate below the quantum well. The transconductance maps
measured at Ez ¼ 1.2 × 106 V=m and Ez¼2.5×106V=m
are presented in Figs. 1(a) and 1(b). The absolute values of
the g factors extracted from these maps are shown in
Fig. 1(c). All experimental details are provided in section A
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of the Supplemental Material [15], see also Refs. [16–18].
Figure 1 demonstrates a significant g-factor anisotropy.
Another observation is that in all cases both g factors are
very small for the lowest transverse channel, n ¼ 1.
Dynamics of a single hole in bulk conventional semi-

conductors are described by the Luttinger Hamiltonian
[19]. We consider here the spherical approximation [20]

HL ¼
�
γ1 þ

5

2
γ̄2

�
p2

2m
−
γ̄2
m
ðp · SÞ2; ð1Þ

where p is the 3D quasimomentum; S is the spin S ¼ 3=2;
γ1, γ̄2 ¼ ð2γ2 þ 3γ3Þ=5 are Luttinger parameters; m is the
free electron mass. There is also a nonspherical part of the
Luttinger Hamiltonian that depends on the cubic lattice
orientation. This part is proportional to η ¼ ðγ3 − γ2Þ=γ̄2.
The parameter η is small in compounds with large SOI, for
example η ¼ 0.34 in GaAs and η ¼ 0.09 in InAs. In
Ref. [9] a mechanism of the QPC g-factor asymmetry
due to the nonspherical part of the Luttinger Hamiltonian
was suggested. The contribution of this mechanism is small
and is calculated in section B of the Supplemental Material
[15], see also Refs. [21–23]. Here we concentrate on
the leading contribution which arises from the spherical
Hamiltonian Eq. (1).
A quantum well potential WðzÞ imposed on Eq. (1)

confines dynamics along the z axis leading to 2D subbands.
Here, we consider only the lowest subband with dispersion

H0 ¼ εk; ð2Þ

where k ¼ ðkx; kyÞ ¼ ðpx; pyÞ is the 2D momentum. At
k ¼ 0 the projection of spin on the z axis Sz is a good
quantum number. Because of the negative sign of the

second term in Eq. (1), the lowest band is a Kramers
doublet with Sz ¼ �3=2. The standard way to describe the
Kramers doublet is to introduce the effective spin s ¼ 1=2
with related Pauli matrices σ. The correspondence at k ¼ 0
is very simple: j↑i ¼ jSz ¼ 3=2i, j↓i ¼ jSz ¼ −3=2i. Note
that the effective spin operators σ� ¼ σx � iσy flip Sz ¼
�3=2 projections. Hence, σ� are transformed as S3�.
Now we apply in-plane magnetic field B. The kinematic

structure of the effective 2D Zeeman Hamiltonian is of the
form [21]

HZ ¼ −
μB
4
fḡ1½Bþk2þσ− þ B−k2−σþ�

þ ḡ2½B−k4þσ− þ Bþk4−σþ�g
g1ðkÞ ¼ k2ḡ1ðkÞ; g2ðkÞ ¼ k4ḡ2ðkÞ: ð3Þ

Pauli matrices σ� (σ2� ¼ 0) have the angular momentum
selection rule ΔJz¼�3, and B� corresponds to ΔJz ¼ �1.
The powers of k� in Eq. (3) balance the z component of the
angular momentum in such a way that the total Hamiltonian
conserves the angular momentum, ΔJz ¼ 0. While the g1
term in Eq. (3) is well known, the g2 term has never
been considered before. In perturbative treatment of the
Luttinger Hamiltonian Eq. (1), the g2 term appears only in a
high order of the perturbation theory. Of course, at small
momenta g2 ≪ g1, practically this is true if kd < 0.6, where
d is the width of the well. However, all experiments we are
aware of (including ours) are performed at kd > 1.2. In this
case g1 and g2 are comparable.
The functions g1ðkÞ and g2ðkÞ have been calculated

recently for symmetric heterostructures [21]. Here we
calculate them for asymmetric ones. These functions for
an infinite rectangular GaAs quantum well of width
d ¼ 15 nm with superimposed electric field Ez are plotted
in Fig. 2(a).

FIG. 1. Panels (a),(b): Grey-scale plots of the transconductance
showing Zeeman spin splitting of 1D hole subbands in a magnetic
field applied parallel and perpendicular the QPC. Panel a
(Panel b) corresponds to the electric field along the z axis Ez¼
1.2×106V=m (Ez ¼ 2.5 × 106 V=m). Panel (c): Absolute values
of the subband g factors extracted from data in panels (a) and (b).
The circles (squares) correspond to the direction of magnetic
field along (perpendicular) the QPC. The red (blue) symbols
correspond to the out-of-plane electric field Ez¼1.2×106V=m
(Ez ¼ 2.5 × 106 V=m).

FIG. 2. Panel (a): Functions g1 (solid lines) and g2 (dashed
lines) for the 2D system versus momentum, see Eqs. (3) and (8).

Panel (b): Functions gð0Þjj (solid lines) and gð0Þ⊥ (dashed lines) for

the 1D system versus momentum, see Eqs. (4). Both panels are
calculated for a rectangular GaAs quantum well of width d ¼
15 nm with a superimposed electric field Ez. We present plots for
Ez ¼ 0, 1, 2, 3 MV=m, with black, red, green, and blue lines,
respectively. The value of the electric field in MV/m is pointed
out near each line.
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Remarkably the existence of two isotropic g functions
leads to an anisotropy of the QPC g factor. The QPC g
factor is determined experimentally by the splitting of the
transconductance peaks in a magnetic field, see Fig. 1.
We define the x axis to be along the QPC (the direction of
the current) and the y axis perpendicular to the QPC.
The transconductance peaks correspond to the chemical
potential aligning with the 1D subband edges, where
kx ¼ 0. Therefore, in the g-factor measurements k ¼ ky
and k� ¼ �ik. Hence, at the 1D subband edge the Zeeman
interaction Eq. (3) for a QPC reads

HZ→−
μB
2
fgð0Þjj Bxσxþgð0Þ⊥ Byσyg

gð0Þjj ðkÞ¼g2ðkÞ−g1ðkÞ; gð0Þ⊥ ðkÞ¼−g2ðkÞ−g1ðkÞ: ð4Þ

The superscript (0) indicates that these are terms of the zero

order in η. Plots of gð0Þjj ðkÞ and gð0Þ⊥ ðkÞ for an infinite 15 nm

rectangular GaAs quantum well with different values of Ez
are presented in Fig. 2(b).
Calculations of the in-plane Zeeman response have a

nontrivial pitfall related to gauge invariance. This pitfall
was overlooked in previous studies. To find the g functions
we diagonalize the 3D Hamiltonian

H ¼ HL þWðzÞ − 2κμBB · S

A ¼ ½Byðz − z0Þ;−Bxðz − z0Þ; 0�; ð5Þ

where A is the vector potential included in HL via “long
derivatives” (for details see Ref. [21]), and 2κ is the bulk g
factor. In Eq. (5) z0 is an arbitrary constant. Because of
gauge invariance, z0 cannot affect any physical observable.
However, at arbitrary z0 the minimum of the 2D hole
dispersion is generally not at k ¼ 0. In particular, in this
situation the transconductance peaks do not correspond to
kx ¼ 0. To avoid this complication we fix the value of z0
with the condition that the minimum of the dispersion is at
kx ¼ 0. For a symmetric quantum well WðzÞ ¼ Wð−zÞ the
value of z0 is dictated by symmetry, z0 ¼ 0, the center of
symmetry of the well. In the next paragraph we discuss
how to determine z0 for an asymmetric heterostructure,
WðzÞ ≠ Wð−zÞ.
An asymmetric quantum well gives rise to Rashba SOI

HR ¼ −
i
2
αkðk3þσ− − k3−σþÞ: ð6Þ

This term has to be added to the effective 2D Hamiltonian
H2D given by Eqs. (2) and (3). Besides the Rashba SOI
Eq. (6) one more kinematic structure in the effective 2D
Hamiltonian is possible,

HBðkÞ ¼ γkð½B × k� · ẑÞ: ð7Þ

Here, γk is a momentum dependent coefficient. To the best
of our knowledge, the term Eq. (7) was unknown in
previous literature. The momentum independent part of
γk can be gauged out, see below, hence γk ∝ k2 and HB

scales as k3 similar to Eq. (6). According to our calculations,
Eqs. (6) and (7) become comparable at B ≈ 10 T. Note that
Eqs. (6) and (7) are the only inversion asymmetric kin-
ematic structures allowed by other symmetries in the
effective 2DHamiltonian in the spherical (γ3 ¼ γ2) approxi-
mation. The term Eq. (7) can be absorbed in the dispersion,
εk þHBðkÞ ≈ εkþq, where q ¼ −m�ðkÞγk½B × ẑ� and
m�ðkÞ ¼ k=ð∂εk=∂kÞ is the effective mass. This shift is
equivalent to the variation of z0 discussed in the previous
paragraph. To fix the dispersion minimum at k ¼ 0 one
needs to set γk¼0 ¼ 0. The value of z0 providing this
condition follows from the equation

��∂H
∂k

�
k¼0

�
¼ ∂H2D

∂k
����
k¼0

¼ 0: ð8Þ

Here H is given by Eq. (5) and H2D is the effective 2D
Hamiltonian which includes terms Eqs. (2), (3), (6), and (7).
Brackets stand for the averaging over the wave function
corresponding to k ¼ 0, but B ≠ 0. Solving Eq. (8) in the
linear in B approximation yields the value of z0. The effect
of quantum well asymmetry on the 2D functions g1ðkÞ,
g2ðkÞ, and the 1D g factors gð0Þ∥ ðkÞ and gð0Þ⊥ ðkÞ calculated
with the constraint Eq. (8) for electric fields Ez ¼ 1, 2,
3 MV=m are shown in Fig. 2 by the colored lines. The
corresponding values of z0 determined from Eq. (8) are
z0ðnmÞ ¼ 1.38, 2.37, 3.03 (zero is in the center of the
square well).
To complete the discussion of gauge invariance,wewould

like to demonstrate that in the presence of the Rashba
interaction Eq. (6) the functions g1 and g2 in Eq. (3) are not
gauge invariant. Let us perform the shift gauge transforma-
tion k→k−δA0, δA0 ¼ −δz0½B × ẑ�. Hence the dispersion
Eq. (2) is changed as εk → εk−δA0

≈ εk − ð∂εk=∂kÞδA0. The
δA0 term in this equation can be transferred toEq. (7) leading
to a change of γk → γk − δz0=m� that is discussed in the
previous paragraph. One must also perform the shift of
k → k − δA0 in the Rashba interaction Eq. (6), HRðkÞ→
HRðk−δA0Þ≈HRðkÞ−ð∂HR=∂kÞδA0. The δA0 term in this
equation can be transferred to Eq. (3), leading to the change
μBḡ1 → μBḡ1 þ δz0ð6αk þ kα0kÞ, μBḡ2 → μBḡ2 − δz0α0k=k.
Here α0k ¼ ð∂αk=∂kÞ is the derivative of the Rashba cou-
pling coefficient. Thus, the functions g1 and g2 are not gauge
invariant. Of course, physical g factors are gauge invariant,
but generally they are different from g1, g2. Only in the gauge
fixed byEq. (8) do the physical g factors coincidewith g1, g2.
The same is true for the subleading corrections δ̄1 and δ̄2
proposed in Ref. [9] and calculated in section B of the
Supplemental Material [15].
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Our experiments have been performed with a 2D hole
density of 1.1 × 1011 cm−2. It corresponds to a 2D Fermi
momentum k2DF ¼ 0.83 × 10−2 Å−1. The QPC channel is
defined by the “transverse” Hamiltonian, Htr ¼ εk þ UðyÞ,
k ¼ ky, where UðyÞ is the transverse self-consistent poten-
tial of the QPC. The energy levels of this Hamiltonian En,
enumerated by index n ¼ 1; 2; 3;…, correspond to the 1D
transverse channels. Varying the split-gate voltage adjusts
the self-consistent potential UðyÞ, providing the condition
to depopulate the nth 1D subband, En ¼ εF. This implies
that UðyÞ depends on n. The self-consistent potential
Uðx; yÞ for our device is calculated in section C of the
Supplemental Material [15] using the Thomas-Fermi-
Poisson method, see Refs. [24–26]. The potentials UðyÞ ¼
Uðx ¼ 0; yÞ for n ¼ 1, 3, 5, 8 are plotted in Fig. 3(a).
While for n ≥ 3 the potential minimum in the 1D

channel is practically zero, Uð0Þ ≈ 0, for n ¼ 1 the value
ofUð0Þ is large, just slightly smaller than the Fermi energy.
Therefore, ky in this case is much smaller than the Fermi
momentum in the 2D reservoirs. Since the in-plane g
factors scale roughly as k2y, the large value of Uð0Þ explains
the very small values of g factors for n ¼ 1, see Fig. 1(c).
Note that the potentials in Fig. 3(a) are very close to those
obtained a long time ago for electrons [27]. Note also that
the behavior of g factors at n ¼ 2 is different from that at
n ≥ 3 and from n ¼ 1, see Fig. 1(c). This is because of two
competing and comparable effects, (i) the reduction of g
factors since Uð0Þ > 0, (ii) the enhancement of g factors
due to many body Coulomb interaction effects. The low n
enhancement of the in-plane g factor due to many body
effects is well known in electron systems [4]. Fortunately,
both complications become irrelevant at n ≥ 3. The con-
dition Uð0Þ ≈ 0 holds, and the Coulomb interaction is
sufficiently screened. The g factors at n≥3 can be deter-
mined from Fig. 2(b) by taking the values at k ¼ ky ¼ k2DF .

This gives the g factors gð0Þjj and gð0Þ⊥ shown by the dashed
lines in Fig. 3(b), plotted versus the applied electric field.
To complete the story we have also taken into account

the subleading η correction due to crystal anisotropy
proposed in Ref. [9]. We have corrected the calculations
of Ref. [9] for some errors as described in the Supplemental
Material [15]. The η correction can be described by two
momentum dependent functions δþðkÞ and δ−ðkÞ defined
in section B of the Supplemental Material [15]. The η
correction depends on the orientation of the QPC with
respect to the crystal axes as given by Eq. (B7). In our
experiment the QPC is oriented along the (110) direction;
hence, the angle ϕ defined by Eq. (B5) is ϕ¼π=4.

Therefore, according to Eq. (B7) gjj ¼ gð0Þjj − δ− and g⊥ ¼
gð0Þ⊥ þ δþ. The plots of δ� versus electric field are presented
in panel B of Fig. B1 in the Supplemental Material [15].
Hence we arrive at the plots of gjj and g⊥ versus electric
field shown in Fig. 3(b) by the solid black and red lines.
The calculated value of g∥ is practically independent
of the field, and is equal to g∥ ≈ 0.46. In contrast, the
perpendicular g factor g⊥ depends on the field significantly,
and even changes sign. However, at values of the field used
in the experiment, Ez¼1.2MeV=m and Ez ¼ 2.5 MeV=m,
the absolute values of the g factor are practically equal,
jg⊥j ≈ 0.17. The theory agrees with data presented in
Fig. 1. We stress that in g∥ there is no compensation
between different contributions; therefore, the calculation is
rather reliable. On the other hand, for g⊥ there is a
significant compensation between the g1 and g2 contribu-
tions; therefore, the expected theoretical uncertainty in g⊥
is larger than that in g∥. Dotted lines in Fig. 3(b) show our
prediction for the [100] orientation of the QPC. The
essential ingredients of the theory are the functions
g1ðkÞ, g2ðkÞ considered in the main text and the coefficients
δ� calculated in the supplementary material. In principle,
one can disentangle these parameters experimentally by
performing measurements for different Ez with a set of
QPCs aligned along different crystal orientations. Ideally
the electric fields should encompass the values shown in
Fig. 3(b), with QPC’s oriented along the [110] and [100]
directions. All the devices must have the same density of
holes in leads.
Besides the g1 − g2 effect considered above, and the

crystal anisotropy η correction calculated in section B of
the Supplemental Material [15], there is one more effect
influencing g⊥. This 1D effect is due to a combination
of the transverse QPC confinement with the Rashba SOI. It
was previously addressed in numerical calculations for
hole [28] and electron [29] wires. The 1D effect leads to
g⊥ oscillations and suppression with subband number n,
∝ðsin πnδR=πnδRÞ, where δR is a parameter related to the
Rashba SOI. At the same time, g∥ is not affected. This effect
is weak in quantum wells, and hence is irrelevant for our
experiments, but is relevant in other experiments [8–10].

FIG. 3. (a) Self-consistent QPC transverse potential for 1D
channels with n ¼ 1, 3, 5, 8 subbands occupied. (b) QPC g
factors g∥ and g⊥ for n ≥ 3 versus electric field. The hetero-
structure is modeled as a 15 nm wide infinite rectangular quantum
well with a superimposed electric field Ez. The hole density in the
2D leads is 1.1 × 1011 cm−2. The dashed lines account only for
the leading spherical contribution. The solid ([110] QPC ori-
entation) and dotted ([100] QPC orientation) lines account for the
leading contribution and for the first subleading one proportional
to γ3 − γ2.
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The effect is discussed in section D of the Supplemental
Material [15].
Conclusion.—We have performed systematic experi-

mental and theoretical studies to resolve the problem of
anisotropic g factors measured in quantum point contacts
based on p-type heterostructures. We found that the most
important mechanism for the anisotropy is related to the
existence of two kinematically different effective Zeeman
interactions for holes. Using our theory we make several
predictions to motivate further experiments. The predic-
tions include the effects of (i) Variation of density in the
leads [Fig. 2(b)], (ii) Change of the QPC orientation
[Fig. 3(b)], and (iii) Variation of the electric field Ez
[Fig. 3(b)].
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