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The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured,
directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to
investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that
are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is
non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the
presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of
the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies
the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend
on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.
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When a liquid is supercooled well below the melting point
the viscosity and characteristic relaxation time increase
dramatically. Ultimately, the relaxation time surpasses the
experimental time scale; the liquid then falls out of equilib-
rium and forms a glass. There is consensus that the dynamics
close to the glass transition is dominated by “hopping”where
energy barriers, ΔE, have to be overcome by thermal
fluctuations [1]. This should lead to an Arrhenius temper-
ature dependence of the relaxation time τ ¼ τ0 expðΔE=TÞ,
where τ0 is amicroscopic time.However, formost liquids the
temperature dependence ismore dramatic. One of the earliest
explanations of the increase in relaxation time was that it
could be caused by the decrease in volume upon cooling [2].
However, high pressure measurements have clearly demon-
strated that the activation energy depends on both temper-
ature, T, and density, ρ [3,4], leading to an equation of the
form τ ¼ τ0 exp½ΔEðρ; TÞ=T�.
Close to the glass transition, where the relaxation time is

on the order of hours, it is possible to perform aging
experiments in which the liquid’s properties are monitored
as it approaches a new equilibrium after a change in
temperature [5–8]. The out-of-equilibrium liquid accesses
parts of phase space that are not accessed by the equilib-
rium liquid. It is for example possible to change the
volume without a concomitant change of the microscopic
structure. Aging experiments can therefore give new
information to the puzzle of what governs the relaxation
time and could play a role analogous to that played by high
pressure measurements [3,4,9], ultrastable glasses [10], and
confinement [11,12], which have led to important exper-
imental advances in glass science during the last couple of
decades.
A long-standing phenomenological model for the glass

transition is the Adam-Gibbs model in which the activation
energy is governed by the configurational entropy of the

liquid [13]. This model has led to the expectation that the
relaxation time and viscosity are Arrhenius when the
structure of the glass is frozen [14,15]. However, accessing
(and properly defining) the out-of-equilibrium relaxation
time is intrinsically challenging, because relaxation time is
continuously changing as aging takes place.
In this paper we present a novel strategy for extracting

the out-of-equilibrium relaxation time. The method is based
on measurements of linear volume relaxation combined
with nonlinear volume aging. Because the property moni-
tored during aging is volume, the data give direct infor-
mation about how the relaxation time depends on volume in
the out-of-equilibrium liquid. We find that the relaxation
time is non-Arrhenius under isostructural conditions—
challenging the Adam-Gibbs model. Moreover, we suggest
a mapping onto the equilibrium phase diagram implying
the nontrivial existence of isostructural lines in the equi-
librium phase diagram.
The sample used was polyisobutylene Mw ¼ 390 with

polydispersity 1.06 acquired from Polymer Standard
Service. The technique used for measuring volume relax-
ation is capacitative dilatometry [16,17]. This method takes
advantage of the fact that the changes in capacitance are
governed by the density of a dielectric material when
studied in a range where no relaxation is present.
The experimental protocol used is to make an “instanta-

neous” step in temperature and subsequently measure the
volume as a function of time. In order for a temperature step
to be instantaneous compared to the time scale of the
relaxation, the latter needs to be at least 2 orders of
magnitude larger than the time scale of the temperature
change.We find that to have linear response the temperature
changesmust be as small as 1‰ of the absolute temperature,
which corresponds to volume changes on the order of 0.1‰.
Thus, the requirements for a linear experiment are precise
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and fast temperature control combined with high precision
measurements of volume changes.
The measurements were performed around the reference

temperature 189.7 K where the dielectric relaxation time is
of the order of one hour; the temperature steps were made
on a time scale of a few seconds. The volume change is
measured every 2 seconds using an electric signal of
10 kHz. (See Ref. 17 and Supplemental Material
Ref. [18] for details.)
Figure 1 depicts the temperature protocol and raw data

given in the form of relative volume change δVðtÞ ¼
½ðVðtÞ − VrefÞ=ðVrefÞ� where Vref is the sample volume at
the reference temperature 189.7 K. Up jumps in temper-
ature lead to an increase in volume that takes place in two
steps. The first step is a fast glassy expansion analogous to
the expansion of crystalline solids. The second step is slow
volume aging due to structural relaxation. The equilibrium
volume of the reference temperature is recovered after a
cycle of an up and a down jump in temperature.
The well-known asymmetry of the up and down jump

[23] is clearly seen even for these moderately sized temper-
ature jumps. For a down jump in temperature the sample
moves from a state point of shorter relaxation time to a point
of longer relaxation time. As the equilibrium is approached
the relaxation thus gets slower leading to autoretardation of
the relaxation, which becomes highly stretched. For the up
jump the relaxation is conversely autoaccelerated, making it
less stretched than the linear relaxation.
Only the smallest temperature jumps of 0.2 K or less lead

to symmetric linear response, where the relaxation after up
and down jumps has the same shape within the precision of

the measurement. This is seen [Fig. 1(d)] by plotting the
normalized relaxation

RðtÞ ¼ VðtÞ − V∞

V0 − V∞
; ð1Þ

where V0 refers to the volume before the temperature jump
and V∞ refers to the new equilibrium value.
Equilibrium is never completely achieved because the

measurement time is finite. The distance to equilibrium at
the end of the experiment is in most cases of order 1‰,
except for the largest down jumps in temperature. The
estimation of the distance to equilibrium can be crucial for a
detailed analysis of the end of the relaxation (see Ref. [24]).
The last 3% of the relaxation is therefore discarded in the
analysis.
The aim of this work is to study the behavior of the

relaxation time in the out-of-equilibrium liquid in order to
determine its dependence on volume, temperature, and
structure. Within the traditional Tool-Narayanaswamy (TN)
formalism [6,25–28] the relaxation time can be defined as
the inverse of the clock rate τðtÞ ¼ 1=γðtÞ. In the TN
formalism the nonlinearity is accounted for by introducing
a material time, ξ, given by the integral

ξðtÞ ¼
Z

t

0

γðt0; TÞdt0; ð2Þ

where γðt0; TÞ is the so-called “inner clock” rate of the
system. The central idea of the TN formalism is that
relaxation function, R, is a unique function of ξ: RðtÞ ¼
R½ξðtÞ�.
In the traditional use of the TN formalism one assumes

explicit function for both the spectral shape of the linear
relaxation curve and the temperature dependence of the
relaxation time [6,28]. However, there are no uniformly
agreed-upon functions describing either of these; in fact the
search for such functions is part of the research in glass
science [29–32]. When applying the TN formalism, the
functional choice made can have critical influence on the
conclusions drawn as demonstrated by Richert [33]. In this
work the linear and nonlinear experiments have been
performed on the same sample and setup, making it
possible to use the TN formalism to extract the out-of-
equilibrium relaxation time without assumptions. Inspired
by the formalism developed in Ref. [24,28] we start by
introducing the Kovacs-McKenna rate [34,35] defined as

ΓðtÞ ¼ −
d lnR
dt

: ð3Þ

Figure 2(a) is a classical Kovacs plot [34] where the
Kovacs-McKenna rate is shown as a function of the
volume. It demonstrates that the Kovacs-McKenna rates
can differ even when both volume and bath temperature are
the same. The Kovacs-McKenna rate of an exponential
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FIG. 1. Protocol and raw data. The colors in this figure are used
as the legend for all figures in the paper. (a) The measured
temperature as a function of time. (b) A sketch illustrating the
change of volume during the experiment. (c) The measured
relative changes of volume after each temperature jump as a
function of time. (d) The normalized relaxation function, R,
defined in Eq. (1) as a function of time.
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relaxation RðtÞ ¼ expð−t=τexpÞ is given by 1 over the
relaxation time, Γexp ¼ 1=τexp, i.e., a horizontal straight
line in the Kovacs plot. However, nonexponential relaxa-
tion as well as nonlinearity lead to deviations from the
horizontal line. In Fig. 2(a) it is clearly seen that the linear
relaxation (black curves) is very nonexponential, and it is
also well known that linear response in glass formers is
stretched. To separate the effect of nonlinearity from that of
nonexponentiality we present a rescaled version of the
Kovacs plot in Fig. 2(b). Here ΓðtÞ is shown as a function of
the normalized relaxation function R from Eq. (1) and it is
seen that the linear (black) curves collapse as expected.
From the definition of the clock rate it follows that one

can define a dimensionless Kovacs-McKenna rate

~Γ ¼ −
d lnR
dξ

¼ −
d lnR
dt

dt
dξ

¼ ΓðtÞ
γðtÞ : ð4Þ

~Γ is a function of R, because R is a monotone function of ξ,
meaning that ~Γ falls on a mastercurve when plotted as a
function of R. The clock rate γ is time independent in the
case of linear relaxation; thus ~Γlin ∝ Γlin and the directly
measured linear curve therefore gives the master curve.
Hence, the clock rate can be found from the relation

γðtÞ ¼ a
Γ½RðtÞ�
ΓlinðRlinÞ

ð5Þ

evaluating Γlin at Rlin ¼ RðtÞ. The scaling factor a is set to
make the long time limiting value of Γlin and γðtÞmatch for
temperature steps ending at T ¼ 189.7 K. Equation (5) is
used for finding the clock rate γðtÞ in the range of R where
the data are most precise [illustrated by vertical lines in
Fig. 2(b)]. There is noise on the linear curves in Fig. 2(b)
because they are generated from a numerical derivative of a
weak signal. A running average is therefore used including
both the linear up and down jump. The extracted log½γðtÞ�
values are found to be a linear function of volume with the
same slope for all temperature jumps, extending the
findings of Ref. [36], but at odds with the suggestion in
Ref. [37]. The linear dependence of log½γðtÞ� on volume is
inserted in Eq. (4) to find ~Γ. It makes all the relaxation
curves collapse in the dimensionless Kovacs plot as shown
in Fig. 2(c). This demonstrates that the data are consistent
with the TN formalism and a linear dependence of log½γðtÞ�
on volume. The clock rate extracted from the procedure is
plotted along with the Kovacs-McKenna rate in Fig. 2(a).
A close study of Fig. 2(a) reveals that the rates of all the

jumps with the same final temperature fall on one line,
meaning that there is no memory effect on the clock rate.
Thus there is no history dependence and we can write
log½γðtÞ� ¼ logðγ½VðtÞ; T�Þ during isobaric aging. This
indicates that if there are dynamical heterogeneities and/
or local fluctuations in the dynamics then these all age in
the same way as “slaves” of the global clock rate γðtÞ in
agreement with earlier findings [33,38]. Now we can
consistently define the out-of-equilibrium relaxation time
as one over the rate τðtÞ ¼ 1=γðtÞ and analyze how τðtÞ
depends on the state of the liquid.
When the temperature is changed there is an initial

volume change, on time scales much shorter than the
structural relaxation. The fast volume change corresponds
to the glassy response, and accounts for more than 20% of
the total density change [Fig. 1(d)]. It has a contribution
from anharmoncity analogous to expansion of crystalline
solids and possibly also a contribution from a β-relaxation
process. With the current setup we cannot separate these
two contributions; however, the β relaxation in the dielec-
tric spectrum [18] accounts for a few percent of the total
relaxation. Moreover, it is generally believed that the
β-relaxation is local in nature. Therefore we assume that
the volume change that is faster than the structural
relaxation is isostructural. Along with the temperature
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FIG. 2. Kovacs-McKenna rates, Γ, dimensionless Kovacs-
McKenna rates, ~Γ, and clock rates, γ. The colors correspond
to the colors used in Fig. 1. Magenta, up jumps ending at
T ¼ 189.7 K; blue, down jumps ending at T ¼ 189.7 K; red, up
jumps away from T ¼ 189.7 K; green, down jumps away from
T ¼ 189.7 K; black, jumps of 0.2 K, which were found to be
linear in Fig. 1(d). (a) The Kovacs-McKenna rates (curves in the
top of the figure) and clock rates (lines in the bottom of the figure)
as a function of volume during aging. Triangles indicate the rates
corresponding to the isostructural relaxation times in Fig. 3.
(b) The Kovacs-McKenna rates as a function of the normalized
relaxation function. (c) The dimensionless Kovacs-McKenna
rates as a function of the normalized relaxation function.
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change and the isostructural volume change there is also a
fast—isostructural—change in the relaxation time τðtÞ. By
considering the relaxation time right after a series of
temperature jumps starting from 189.7 K, we get access
to the isostructural temperature dependence of the relax-
ation time. The result is shown in Fig. 3 along with the
equilibrium (isobaric) temperature dependence and the
Arrhenius dependence for the case of a constant activation
energy. Namely τ ¼ τ0 exp ½ðΔEÞ=ðkBTÞ� setting τ0 to a
physically realistic value of one picosecond. In Fig. 3 the
isostructural points clearly deviate from this Arrhenius
behavior, demonstrating that there is a change in the
activation energy even under isostructural conditions. We
assume, as mentioned above, that the glassy response is
isostructural and our finding challenges the Adam-Gibbs
model under this assumption, because the model has
configurational entropy as the parameter governing the
activation energy.
We now move on to a global interpretation of the

relaxation time’s dependence on the state of the liquid.
The fact that the relaxation time is the samewhendensity and
bath temperature are the same during isobaric aging with
different jump sizes suggests that the out-of-equilibrium
liquid moves through the same structural states for different
jumps with the same final temperature. This can be ration-
alized via the notion that the transient states during aging are
quasiequilibrium states [39,40], an idea that lies behind the
generalized fluctuation dissipation theorem (FDT) [41,42]
and the definition of an effective temperature [43,44].
Here we build on the idea that aging happens by visiting

quasiequilibrium states and suggest a mapping of isobaric
aging onto the equilibrium phase diagram. The starting and
end points are by definition on the isobar. The jump in
temperature leads to a fast isostructural volume change,
moving the sample to a state that has the same structure yet
a different volume than the initial point. The idea of the
mapping implies that this new point corresponds to an
equilibrium point that could be the start of another jump
(though it would be performed at a different pressure),

which would take the liquid to yet another isostructural
point. Consequently fast isostructural volume changes
after a temperature jump, combined with the conjecture
of a mapping from out-of-equilibrium to equilibrium state
points, imply the existence of isostructural lines in the
equilibrium phase diagram.
Guided by the above arguments we follow the ideas of

Gnan et al. [40] who based on the isomorph theory suggest
a phase diagram with isostructural lines (so-called iso-
morphs). In order to describe the aging path in the
equlibrium phase diagram (Fig. 4) an effective temperature
is defined by the equilibrium point that has the same
structure and density as the out-of-equilibrium liquid.
When temperature is decreased density increases in two
steps—first fast while staying on the isostructural line and
then slowly by structural aging. From the raw data we know
that the density change during the isostructural step is of the
order of 20% to 30% of the total density change. Our
conjecture is that the activation energy depends uniquely on
density and the effective temperature.
The effective temperature from Gnan et al. is defined

coming from a generalized FDT [41,44], and is from a
different tradition of aging studies than this work. However,
if the notion of a mapping from out of equilibrium to
equilibrium is to be meaningful, the two types of structural
temperature must be identical.
Note that the effective temperature defined here is different

from the classical fictive temperature that is often introduced
when treating (isobaric) aging experiments [6,25,28]. In the
classic definition the fictive temperature is the temperature
on the experimental (atmospheric) isobar where the equilib-
rium liquid structure corresponds to the structure of the
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out-of-equilbrium liquid. Right after a temperature jump the
fictive temperature is therefore equal to the temperature
before the jump. The difference between the two temper-
atures is illustrated in Fig. 4. The classical fictive temperature
definition de facto ignores that the equilibrium phase dia-
gram has two dimensions and cannot be generalized to
describe aging after a pressure jump.
In conclusion we find that there is no memory effect on

the relaxation time of the out-of-equilibrium liquid. We
suggest a mapping of the isobaric aging path onto the
equilibrium phase diagram by defining an effective temper-
ature. The activation energy then depends on the effective
temperature and the density. Specifically, it is found that the
activation energy can change even when structure is
constant, a finding that challenges the Adam-Gibbs model.
Moreover, we argue that the mapping implies the existence
of isostructural lines in the equilibrium phase diagram. This
suggests that understanding isobaric aging of simple liquids
in the framework of isomorph theory [45] might be a
promising route.
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