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Recent studies of melting in hard disks have confirmed the existence of a hexatic phase occurring in a
narrow window of density which is separated from the isotropic liquid phase by a first-order transition, and
from the solid phase by a continuous transition. However, little is known concerning the melting scenario in
mixtures of hard disks. Here we employ tailored Monte Carlo simulations to elucidate the phase behavior of
a system of large (l) and small (s) disks with diameter ratio σl=σs ¼ 1.4. We find that as small disks
are introduced to a system of large ones, the stability window of the hexatic phase shrinks progressively
until the line of continuous transitions terminates at an end point beyond which melting becomes a first-
order liquid-solid transition. This occurs at surprisingly low concentrations of the small disks, c ≲ 1%,
emphasizing the fragility of the hexatic phase. We speculate that the change to the melting scenario is a
consequence of strong fractionation effects, the nature of which we elucidate.
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One of the most celebrated accomplishments of statis-
tical mechanics is the progress in understanding the rich
physics of phase transitions in two-dimensional (2D)
systems. In particular, the melting of 2D solids has puzzled
researchers for decades. Early theoretical considerations [1]
seemed to rule out the existence of 2D crystals, and the
celebrated Mermin–Wagner theorem [2,3] proved that
short-range continuous potentials cannot possess long-
range positional order [4]. However, these theories were
in conflict with early simulation results for hard disks
[5] which suggested the presence of a first-order phase
transition between a liquid and a solid [5]. The early
simulations established hard disks as a benchmark system
for testing theories of 2D melting, and motivated [6]
Kosterlitz and Thouless (KT) to develop the theory that
now bears their name [7] (also independently found by
Berezinskii [8]). Within the KT theory, a new type of 2D
solid phase is proposed, having long-range orientational
order and only quasilong range positional order, and whose
melting involves the continuous unbinding of dislocation
pairs. The phase that results from the KT transition
mechanism was originally believed to be an isotropic
liquid, but Nelson, Halperin [9,10], and Young [11]
realized that the new phase retains quasilong range orienta-
tional order, and melts via a second KT transition involving
the unbinding of dislocations into free disclinations. The
intermediate phase was called the hexatic phase, and the
scenario of melting via two continuous transitions is known
as the KTHNY theory.
KTHNY theory is based on the assumption that the solid

phase remains stable on decompression until the continu-
ous dislocation unbinding transition. It does not exclude the

possibility that this transition is preempted by a first-
order transition, as simulations at first seemed to suggest.
The two competing scenarios were debated for decades,
see, e.g., Refs. [12–16], until a new class of event-chain
rejection-free algorithms was developed that allowed the
simulation of large systems in the melting region [17]. This
led to a surprising discovery [17]: the melting of hard disks
occurs via a continuous KT transition between the solid and
hexatic phase, and via a first-order transition between the
hexatic and liquid phase [18]. The work has also been
extended and generalized to soft potentials [19,20], to hard
polygons [21], and to hard-sphere monolayers [22], where
the findings were even verified experimentally for colloidal
particles [23].
Hitherto, studies of 2D melting have focused almost

exclusively on pure (i.e., single component) systems.
However, many important materials are mixtures of differ-
ent sized particles, and exhibit phase behavior that is richer
than for pure systems. A specific question of fundamental
interest is “what happens to the melting transition of pure
hard disks when a low concentration of smaller hard disks
is introduced?” This second species acts as a form of
disorder, which can selectively favor one particular phase,
and might change the nature of the transition [24,25]. Here
we consider the melting scenario for such a binary mixture
of hard disks. We choose the size ratio between large (l) and
small (s) disks to be σl=σs ¼ 1.4, which is large enough to
constitute a significant perturbation, but small enough to
ensure that the minority (s) component is included substitu-
tionally rather than interstitially in the solid. We define the
concentration of small disks by c ¼ Ns=ðNl þ NsÞ, withNl
and Ns the number of large and small disks, respectively.
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In order to obtain accurate coexistence properties of
mixtures, one needs to account carefully for fractionation
effects, i.e., the different partitioning of species among the
coexisting phases [26]. Open ensembles are particularly
suited for this purpose. Here we utilize Monte Carlo (MC)
simulation in the semi-grand canonical ensemble (SGCE),
in which disks can change their species [27], controlled by
a fugacity fraction ξ ¼ fs=ðfl þ fsÞ, with fs and fl the
fugacities of the s and l disks, respectively. The value of ξ
sets the overall concentration, which will generally differ
from that of the individual phases. In order to accelerate
local density and concentration fluctuations we implement
the event-chain algorithm [17,28], as well as a position
swap for randomly selected pairs of disks. In the regime of
small c of interest here, ξ is Oð10−5Þ and for convenience
we quote only its coefficient; e.g., we write ξ ¼ 3 instead
of ξ ¼ 3 × 10−5.
The disks occupy a periodic square box of side L which,

in common with other lengths, we measure in units of σl.
In order to study the effects of varying c, we selected 16
different values of ξ in the interval ξ ∈ ½0; 40�. For each ξ,
we scanned (in a stepwise fashion) the range of number
density ρ ¼ ðNs þ NlÞ=L2 over which melting occurs.
Within a two-phase region these paths of constant ξ
correspond to tie lines along which phase separation occurs
at constant fugacity for each component. We measured the
pressure P along each tie line to obtain the corresponding
equation of state (EOS), PðρÞ as described in the
Supplemental Material [29]. This was found to exhibit
the typical van der Waals loop of a first-order phase
transition in a finite-sized system [30], which for pure
hard disks correspond to the liquid to hexatic transition

[17]. Application of the Maxwell construction permitted
the determination of the coexisting densities that mark the
termini of the tie line.
In order to locate the density of the KT transition

separating the hexatic and solid phases, we extended to
binary mixtures the methods of Ref. [17]. Specifically,
for each ξ we computed the pair correlation function gðrÞ
for a sequence of densities. The hexatic-solid transition is
signaled by a crossover in the form of gðrÞ from exponential
(hexatic order) to power-law (solid) behavior. Since the
system can exhibit a very large correlation length, the
accurate location of the crossover density requires simula-
tions of considerable size and duration. Most of our studies
were performed for N ¼ Ns þ Nl ¼ 2562 particles, while
N ¼ 5122 was used for a selected number of fugacities in
order to assess finite-size effects, the analysis of which is
further discussed in the Supplemental Material [29]. Overall,
our simulations consumed well over 100 years of single-core
CPU time.
Figure 1(a) presents our measurements of the density-

concentration phase diagram. Apparent is a first-order
phase coexistence region delineated by coexistence state
points connected by tie lines. Within this region, a lower
density phase coexists with a higher density phase, the
nature of which we now examine for moderate ξ. A
snapshot inside the coexistence region at ξ ¼ 15 and
ρ ¼ 0.91, is displayed in Fig. 1(b) and shows small
disks as unfilled circles, while large disks are colored
according to the phase of the hexatic order parameter,
ψ j
6 ¼

P
k expði6θjkÞ=nj, where, for each disk j, k is one of

the nj nearest neighbors (defined as the disks whose cells
share one edge with j in the radical Voronoi tessellation),

(a) (b)

(c)

FIG. 1. (a) Phase diagram in the ρ-c plane. Dashed tie lines connect first-order coexistence points for various ξ as marked. The line of
continuous hexatic-solid transitions is shown as symbols, whose size is equal to the error bars (see the Supplemental Material [29]). Data
correspond to N ¼ 2562 unless otherwise indicated. The inset shows the region of low concentration. (b) Snapshot in the coexistence
region at ξ ¼ 15 and ρ ¼ 0.91. The color refers to the phase of the hexatic order parameter, while open circles are small disks plotted
with twice their true size. (c) gðrÞ − 1 (obtained as described in the Supplemental Material [29]) for ξ ¼ 2 at ρ ¼ 0.914 and 0.915
(hexatic phase), and ρ ¼ 0.916 (solid phase). The dashed line is the power-law scaling predicted by KTHNY theory.
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and θjk is the angle that the vector rjk makes with a
reference direction. Evident is a strip of dense phase having
strong hexatic ordering, separated by a rough interface
from a disordered (liquid) phase of lower density. The
Supplemental Material [29] additionally shows that the
EOS exhibits a loop. Both these properties are the hall-
marks of a first-order phase transition. Figure 1(a) shows
that on increasing c, the region of first-order coexistence (as
found for the pure system in Ref. [17]) moves to higher ρ
(and higher P). Interestingly, as ξ increases, the slope of
the tie lines rapidly flattens, implying that small disks are
more easily “dissolved” in the disordered liquid phase. Our
system thus behaves like a eutectic mixture [29].
Also indicated in Fig. 1(a) is the line of continuous

hexatic-solid transitions, marked by the green and blue
triangles, determined from the crossover in the form of
gðrÞ. The nature of this crossover [29] is shown in Fig. 1(c)
for state points spanning the transition line. The blue curve
exhibits exponential decay (albeit with a very long corre-
lation length) characteristic of the hexatic phase, while the
black curve exhibits power-law decay characteristic of the
2D solid. The power-law exponent is compatible with −1=3
(red dashed line), which corresponds to the predicted
stability limit of the solid phase within KTHNY theory.
Our results show that as small particles are introduced to
the system, the continuous hexatic-solid transition point of
the pure system becomes a line of KT transitions that
extends to higher densities.
The inset of Fig. 1(a) expands the high density region

of the phase diagram, revealing that as ξ is increased,
the window of stability of the hexatic phase shrinks.
For ξ ¼ 20� 2, corresponding to c ≈ 1%, the KT line
intersects—and extends metastably into—the region of
first-order coexistence. Thereafter, for ξ≳ 20, the liquid
phase coexists with a solid rather than a hexatic phase. Such
an intersection point is analogous to the critical end point
that features in the phase diagrams of many binary mixtures
[31,32]. There a line of critical demixing transitions
intersects and is truncated by a first-order transition line,
the latter inheriting the singularities of the former.
However, a difference between a critical end point and
the end point in the present system is that the KT transition
is of infinite-order within the classification scheme of
Ehrenfest, and thus the free energy and all its derivatives
are continuous. Accordingly, the locus of the first-order
boundary in our system should be analytic.
In order to check for finite-size effects, we performed

simulations withN ¼ 5122 for ξ ¼ 0, 18, 22, 25; the results
are included in Fig. 1(a). As in Ref. [17], the first-order
coexistence window for the pure system narrows noticeably
with increasing N, but this narrowing is much less
pronounced at high ξ where the transition points are
indistinguishable within our precision. The corresponding
results for the KT line shift slightly to higher ρ with
increased N, but the results still agree within uncertainty.

Overall, therefore, the N ¼ 5122 results confirm the
shrinking of the hexatic stability window.
Further evidence corroborating the disappearance of the

hexatic phase can be gleaned from a study of the elastic
constants of the solid phase. Specifically, we exploit
KTHNY predictions for the Young’s modulus (K) at the
stability limit of the solid, to independently deduce the locus
of the KT line. To estimate K, we measure both the shear
and bulk moduli (see the Supplemental Material [29] and
Refs. [33,34]). However, since the approach applies only to
defect-free solids and is feasible only for much smaller N
than considered above, we implement it in SGCE simu-
lations of N ¼ 3120 disks in which defect generation is
suppressed by the simple expedient of rejecting any update
that would create a dislocation pair. In this way, measure-
ments of K for the constrained (i.e., defect-free) solid, were
made as a function of ρ for a number of values of ξ.
Of course, the equilibrium solid actually contains a

nonzero population of defects, and, consequently, the
measurements of K must be corrected to account for this.
KTHNY theory [10] provides a framework for doing so
which involves solving a set of renormalization group
relations [34], starting from the K value of the defect-free
solid. The solution also requires a calculation of the
fugacity of dislocation pairs y (as described in the
Supplemental Material [29]). The thus corrected values
of K are plotted in Fig. 2(a) for various ξ. Note that
KTHNY theory predicts the melting of the solid to occur
when K=16π reaches unity under decompression, where-
upon K jumps discontinuously to zero. Figure 2(a) thus
shows that adding small disks softens the solid; i.e., it
lowers K, resulting in an increase of the KT transition
density.
Overall, the results emerging from Fig. 2(a) for the ξ

dependence of the KT transition density are in good
agreement with those shown in Fig. 1(a). Additionally,
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FIG. 2. (a) Normalized Young modulus (K=16π) for various ξ
as a function of ρ. The horizontal lines mark the stability limit
K ¼ 16π for the solid phase. (b) The same data plotted as a
function of ρ=ρfirst order (see text).
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the data for KðρÞ confirm the disappearance of the hexatic
phase. This can be appreciated by replottingK as a function
of ρ=ρfirst order, with ρfirst order the high density boundary of
the first-order transition at each value of ξ. Represented in
this way, the data [Fig. 2(b)] reveal that the shift of the KT
transition to higher ρ with increasing ξ is slower than the
shift of the first-order boundary, which therefore ultimately
engulfs it. The value of ξ for which the KT line reaches
its end point can be read off from Fig. 2(b) by locating
that curve which intersects the point ρ=ρfirst order ¼
1; K=16π ¼ 1. This occurs for ξ ≅ 20, in accord with the
previous estimate shown in Fig. 1(a).
We now attempt to rationalize the loss of the hexatic

phase. Accordingly, we search for changes in the structural
character of the phases on increasing ξ that might affect their
entropy balance. We focus on three properties: (i) defect
populations, (ii) spatial correlations between small particles,
and (iii) degree of fractionation. Figure 3(a) plots the ρ

dependence of those defects relevant for the KTHNY
transition; namely, 5–7 dislocation pairs, free 5–7 disloca-
tions, and disclinations with 5 and 7 neighbors. Results are
shown for ξ ¼ 3 and for ξ ¼ 30 [35]. Vertical dashed lines
mark the coexistence boundary for the first-order transition,
and for ξ ¼ 3 the purple line marks the density of the
continuous transition. One observes that the KTHNY
sequence of dislocation pairs (solid) → free dislocations
(hexatic) → free disclinations (liquid) is obeyed for all ξ
considered. One also notes that on traversing the phase
transitions, the site fraction (Ni=N) of all topological defects
remains practically unchanged for both low and high ξ (see
also Fig. S7 of the Supplemental Material [29]).
In order to assess how small particles are distributed, we

plot in Fig. 3(b) their Pielou index (E) as a function of ξ
for densities on the low and high density boundary of the
first-order region. This quantity measures the evenness of a
distribution of points on a plane [36]: E ¼ πρsω̄, where ρs
is the density of small disks and ω̄ is the average squared
distance between a randomly chosen point on the plane and
the nearest small disk. E ¼ 1 signifies a random distribu-
tion, while E > 1 indicates clustering. As Fig. 3(b) shows,
the value of E in both phases grows strongly with
increasing ξ, indicating greater clustering. This is con-
firmed visually by snapshots [Fig. 3(b) and Fig. S7 of the
SM [29]]. Interestingly, the two phases have a very similar
E index for a given ξ, despite their very different values of c
and degree of structural order. This latter result suggests
that the contribution of small particle clustering to the
entropy of the solid and liquid phase are rather similar. We
also note in passing that small particle clusters tend to occur
together with clusters of defects as shown in Fig. 3(b).
Taken together, these finding show that (i) the addition

of small particles seems to have negligible effects on the
population of defects at the transitions; (ii) there is little
difference in the degree of small particle clustering between
the phases (which might otherwise alter their entropy
balance). Accordingly, it is not clear that the loss of the
hexatic is attributable either to changes in defect popula-
tions or to particle clustering. Instead, we speculate that the
effect is primarily driven by fractionation. Specifically, as ξ
increases, the small particles migrate strongly to the liquid.
This in turn raises the (mixing) entropy of the liquid
compared to that of the hexatic or solid phases. The result
is to stabilize the liquid relative to the higher density phase
and hence to shift the first-order coexistence region to
higher ρ faster than the KT line. Ultimately, then, the liquid
region engulfs the hexatic, leaving only liquid-solid coex-
istence in its stead.
To conclude, we have investigated melting in a binary

mixture of hard disks with σl=σs ¼ 1.4 as a function of the
concentration of small particles. We have shown that the
hexatic phase that occurs in the pure case survives only for
very low c≲ 1%, demonstrating that it is an utmost delicate

(a)

(b)

FIG. 3. (a) Fraction of sites with defects for ξ ¼ 3 and ξ ¼ 30.
The dashed vertical lines mark the boundaries of the first-order
region. The purple vertical line marks the continuous transition.
(b) ξ dependence of the evenness index (E) at the low and high
density boundary of the first-order region. Inset: snapshot of a
small region at ξ ¼ 30 and ρ ¼ 0.9343 showing small disks
(twice real size) and Voronoi cells for defects with 5 (green) and
7 (red) neighbors.
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state of matter. For larger c, melting is a first-order
transition directly from solid to liquid.
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