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I show that all phases reported experimentally in binary nanoparticle superlattices can be described
as networks of disclinations in an ideal lattice of regular tetrahedra. A set of simple rules is provided to
identify the different disclination types from the Voronoi construction, and it is shown that those
disclinations completely screen the positive curvature of the ideal tetrahedral lattice. In this way, this study
provides a generalization of the well-known Frank-Kasper phases to binary systems consisting of two types
of particles, and with a more general type of disclinations, i.e., quasi-Frank-Kasper phases. The study
comprises all strategies in nanoparticle self-assembly, whether driven by DNA or hydrocarbon ligands,
and establishes the universal tendency of superlattices to develop icosahedral order, which is facilitated by
the asymmetry of the particles. Besides its interest in predicting nanoparticle self-assembly, I discuss the
implications for models of the glass transition, micelles of diblock polymers, and dendritic molecules,
among many others.
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Materials whose elementary units are nanoparticles, as
opposed to atoms or molecules, provide a new form of
matter organization that raises new fundamental questions
and provides new opportunities to address unsolved prob-
lems. The general strategy to program the assembly of
nanoparticles is to graft their surface with organic mole-
cules, such as hydrocarbons [1], DNA [2,3], or neutral
polymers such as Polyethylene Glycol [4] so that the
combined nanoparticle-ligand system, the nanocrystal
(NC), is soluble in appropriate solvents, and its assembly
can be controlled by external variables, such as solvent
evaporation, temperature, or ionic strength.
While single-component NCs assemble into long-range

structures of either fcc or bcc [2,3,5,6], two-component
systems characterized by the parameter

γ ¼ RB

RA
≤ 1; ð1Þ

where RA, RB are the two NC radii, exhibit a fascinating
cornucopia of crystalline and quasicrystalline phases
[1,7–10]: binary nanocrystal superlattices (BNSLs).
Predicting and understanding these phases has had

significant success in DNA systems [10–14]. In systems
whose capping ligands are hydrocarbons, NCs often behave
as hard spheres, as evidenced by the clear but rather
imperfect correlation between the maximum of the packing
fraction (as a function of γ) and the presumed equilibrium
phases [1,15,16]. It is only recently, with the development of
the orbifold topological model (OTM) [17], that the circum-
stances under which NCs behave as hard spheres have been
clarified, together with detailed quantitative predictions of
the structure of each BNSL [18].

Two obvious questions then arise: are those BNSLs true
minima of the free energy or just metastable states? If they
are true equilibrium states, what minimal thermodynamic
coordinates are needed to fully unravel the corresponding
phase diagram? A possible very appealing idea is that NCs
would ideally pack as regular tetrahedra, and experimental
evidence exists to this statement [19], but this is possible
only in curved spaces, so instead, they arrange in phases
that best approximate such an arrangement in a flat space.
The primordial example is Frank Kasper phases (FK)
[20,21], which can be regarded as decurving the ideal
tetrahedral lattice (the f3; 3; 5g polytope) with (q ¼
−ð2π=5Þ) disclinations [22–26]. Indeed, it has been shown
that disclinations completely balance the positive curvature
and satisfy the zero Regge-curvature [27] condition [24]

FD ¼ 1

2

Z
R

ffiffiffi
g

p
d3x ¼

X
j¼edges

δjlj ¼ 0; ð2Þ

where the index j runs over all edges, lj is the length of the
disclination, and δj is the excess or deficit of the sum of all
the dihedral angles within an edge over the flat result of 2π.
Although the focus of this Letter is on BNSLs, the

consequences of this study extend to many other problems,
such as general studies of the glass transition [24,28–31],
dendrimers and branched polymers [32,33], or diblock
micelles consisting of copolymers with different rigidities
[34], and others [29]. Furthermore, algorithms exist to
enumerate all possible lattices in terms of the disclination
networks, also known as the major skeleton, that satisfy
Eq. (2) [35].
Assuming that the f3; 3; 5g polytope, which consists

of 120 vertices sitting at the surface of S3, represents the
configurations in which NCs would ideally crystallize, the
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next question is what disclinations are available to decurve
the polytope in the flat space we live in. The rotational
symmetry group of f3; 3; 5g is the regular icosahedral
group Y, which contains rotations of angles ð2πÞ=5 and
ð2πÞ=3. The former gives raise to ½ð2πÞ=5�qa and the latter
to ½ð2πÞ=3�qb disclinations, where qa, qb are integers
(additional details not central to this presentation are
discussed in Supplemental Material [36]). In this notation,
FK phases are those whose edges (defined by nearest-
neighbor lattice points) consist of ðqa; qbÞ≡ ð−1 or 0; 0Þ.
A quasi-Frank-Kasper is then defined as any crystalline or
quasicrystalline phase whose edges are characterized by
general integers (qa, qb).
Disclinations are more easily visualized in Voronoi

representation. A (qa. 0) disclination threads a Voronoi
face containing 5 − qa edges, see Fig. 1. The total dihedral
angle is that of 5 − qa tetrahedra [24]

ψ5ðqaÞ ¼ ð5 − qaÞ arccosð1=3Þ: ð3Þ

The ð2πÞ=3 disclinations are identified from the number of
edges joining a given Voronoi vertex, as shown in Fig 1.
Because all vertices are joined by either three or four edges
(corresponding to tetrahedra or octahedra), I interpret a
(0, qb) disclination as the number of octahedra at a given
edge. The dihedral angle is

ψ3ðqbÞ ¼ −qb½π − arccosð1=3Þ − arccosð1=3Þ�
¼ −qb½π − 2 arccosð1=3Þ�; ð4Þ

where it is used that the dihedral of a regular octahedron
is π − arccosð1=3Þ. Here, the extra arccosð1=3Þ arises
because the angle is defined relative to the tetrahedron,
and the minus sign ensures that the angle is positive. The
zero curvature Eq. (2) on a BNSL unit cell is

XNw

i¼1

ni
XFi

j¼1

δjlj ¼
XNw

i¼1

ni
XFi

j¼1

½2π−ψ5;jðqaÞ−ψ3;jðqbÞ�lj ¼ 0;

ð5Þ

where Nw is the number of different Wyckoff positions of
the lattice, ni the number of NCs on each Wyckoff position,
Fi the total number of faces of the ith Voronoi cell, and lj is
the length of the corresponding disclination line. I will
consider two definitions of curvature: in definition one,
I assume all disclinations lengths are the same lj ¼ le. In
definition 2, lj is its value in flat space. For example, an fcc
lattice consist of Voronoi cells with fourfold faces and two
four-coordinated vertices, that is (qa ¼ 1, qb ¼ −2). There
is only one Wyckoff position, and Eq. (5) reads

FDðfccÞ
12lfcc

¼ 2π − 4 arccosð1=3Þ − 2½π − 2 arccosð1=3Þ� ¼ 0;

ð6Þ

using either of the two definitions of the curvature. This
result has the clear physical interpretation of each edge
consisting of two regular tetrahedra and octahedra, see
Fig. 1. Note that the same argument applies to the hcp
lattice, while the bcc result is the one given by the CsCl
phase. See Supplemental Material [36] for other BNSLs
examples.
Using Eq. (3) and Eq. (4) into Eq. (5), the zero-curvature

condition becomes

ql ≡
PNw

i¼1 ni
PFi

j¼1½5 − qaðjÞ þ 2qbðjÞ�lj ≡MðγÞPNw
i¼1 ni

PFi
j¼1½1 − qbðjÞ=2Þlj ≡ Lðγ� ¼ qC;

ð7Þ

where qC¼f2π=½arccosð1=3Þ�g≈5.1042993 is the Coxeter
statistical honeycomb value [37,38]. If all disclination lines
are of the same length and of type (qa, 0), the quantity ql is
the average number of tetrahedra per edge, related to the
average lattice coordination number by NC¼12=ð6−qCÞ≈
13.3973[24]. In any situation, Eq. (7) andNl ¼ 12=ð6− qlÞ
can be compared against the Coxeter values, thus providing
a quantitative test on the accuracy of the zero-curvature
condition.
In Fig. 2, the resulting disclination network is shown

for the twelve most relevant BNSLs, with conventions as
in Fig. 1. There are two FK phases (MgZn2 and Cr3Si).
Particularly interesting is the NaZn13, which consists of

FIG. 1. (a1) Example of a ð2πÞ=3 disclination transforming a
tetrahedra into an octahedra. (a2) The fcc lattice consists of edges
(in green) sharing two tetrahedra (blue) and octahedra (red).
(b) Some constitutive elements (surface around a given NC) of
quasi-FK phases (full list provided in Supplemental Material
[36]). (c) Disclinations considered in this study, see also
Supplemental Material [36].
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(0, −1 or 0) disclinations. I label as anti-FK any phase with
that property. The accuracy of condition Eq. (7) is detailed
in Table I. Rather remarkably, the two definitions of
curvature, see discussion following Eq. (5), almost always
bracket the statistical honeycomb qC, and this occurs by a
nontrivial cancellation of the different Voronoi cells within
the BNSL unit cell (with the exception of the CsCl and
AuCu). The quantity ql is invariant, basically independent
of γ, despite that both LðγÞ and MðγÞ, see Eq. (7), have a
strong γ dependence (Fig. 3).
A measure of the degree of icosahedral order, defined so

that fico ¼ 1 only for the f3; 3; 5g polytope, is

fico ≡ fivefold faces
faces

�
1 −

fourfold vertices
vertices

�
; ð8Þ

and defines a property of each BNSL that is independent
of γ, with actual values are shown in Table I. Clearly, FK
and anti-FK phases show the highest degree of icosahedral
order, and a few phases, namely NaCl, CsCl, AuCu, and
AuCu3, show no icosahedral order at all. Still, those phases
are described by disclination networks where the two
curvature values bracket the zero-curvature condition,
arising after a nontrivial cancellation of all the different
Voronoi cells.
Contact with experiments is made in Fig. 4, where the

observed phases are shown in the γ − fico plane. The
general trend is clear: for γ ≲ 1, CsCl or AuCu dominate,
then at around γ ≈ 0.82, the phases with highest degree of
icosahedral order begin to emerge, which gradually
decreases with γ. The absence of icosahedral order for
γ ≲ 0.4 and γ ≳ 0.8 is a result of those regions dominated

FIG. 2. Twelve lattices and their respective disclination lines, drawn with the convention of Fig. 1. The radical Voronoi tesselation as
implemented in Voro++ [39] is used.
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by single-component NCs (SC regime), as SC phases with
icosahedral order necessarily have low packing fraction.
These results illustrate that icosahedral order is facilitated
by NC asymmetry for 0.3≲ γ ≲ 0.82.
For hydrocarbon systems, the Cr3Si phase is absent. This

is expected, as for the γ range, where it is a FK phase, the
packing fraction is very low [16]. The other phases that do
not conform to the general trend either consist of NCs that
do not act as hard spheres, as allowed by OTM, such as

AuCu3, Li3Bi, and possibly Fe4C, and cubAB13, which
display unusual properties [18]. A reported A6B19 [40] is
not characterized with sufficient precision to be included. A
quasicrystalline DDQC-AT (Dodecagonal quasicrystalline-
Archimedian Tiling) phase is reported in Ref. [8], which
combines features of AlB2 and CaB6. Both phases have a
similar degree of icosahedral order fico ∼ 0.6, and the
disclination networks contain closed loops of (þ1, 0)
disclinations connecting the smaller B particles, while
the larger A − A particles connect with either (−1, 0) or
(−3, 0). Another quasicrystalline phase has been recently
reported [41], which competes with the NaZn13 phase,
with a high degree of icosahedral order fico ¼ 0.98 and a
FK σ phase.
In DNA systems [10], four phases are reported

CsCl → AlB2 → Cr3Si → bccAB6

γ½0.75; 1.0� ½0.4; 0.6� ½0.4; 0.5� ½0.3; 0.4�; ð9Þ

which nicely follow the trend in Fig. 4. The absence of
the other phases discussed arises from the need for
any AðBÞ NC to be surrounded by as many BðAÞ NCs
as possible to optimize DNA hybridizations. Here, the
Cr3Si is possible because DNA stability does not require a
high packing fraction [11]. Recently reported assembly of
bipyramid NCs Ref. [42] into FK phases suggests that
disclination networks and icosahedral order is a general
tendency for single-component systems with different
geometrical shapes, a topic that will need to be analyzed
in further studies.
Recent simulations [31] have shown that the glassy state

on S3 all but disappears. The clear tendency towards
icosahedral order reported in this study is facilitated by
the size asymmetry, thus providing another knob, ¼γ,
Eq. (1), to investigate glass transitions. It also opens the
possibility that the BNSLs reported to date are not true
equilibrium states, but rather, those that are most easily

TABLE I. Different lattices, zero-curvature condition Eq. (7)
using the two definitions of curvature, see discussion after
Eq. (5), and degree of icosahedral order, fico Eq. (8). The
asterisk* denotes BNSLs with ð2πÞ=3 disclinations, where Nl
does not equal the average number of nearest neighbors. Further
discussion for bccAB6, cubAB13, and NaZn13 is provided in
Supplemental Material [36].

Lattice qlðqC ¼ 5.1043Þ NlðNC ¼ 13.3973Þ fico

NaCl [5.0000, 5.1716] [12.0000, 14.4853] 0.00
CsCl [5.1429, 5.0718] [14.0000, 12.9282] 0.00
AuCu [5.1429, 5.0752] [14.0000, 12.9754] 0.00
MgZn2 [5.1000, 5.1087] [13.3333, 13.4632] 0.90
AlB2 [5.0526, 5.1522] [12.6666, 14.1549] 0.63
Cr3Si [5.1111, 5.0962] [13.5000, 13.2777] 0.89
Li3Bi [5.1429, 5.0913] [14.0000, 13.2051] 0.00
AuCu�3 [5.1429, 5.0114] [14.0000, 12.1380] 0.00
Fe4C [5.1892, 5.0321] [14.8000, 12.3979] 0.32
CaCu5 [5.1000, 5.1110] [13.3333, 13.4985] 0.75
CaB�

6 [5.0000, 5.2196] [12.0000, 15.3758] 0.55
bccAB�

6 [5.0323, 5.3232] [12.4000, 17.7318] 0.57
cubAB�

13 [5.5000, 5.8378] [24.0000, 95.1175] 0.44
NaZn�13 [5.1538, 5.2000] [14.1819, 14.9935] 0.98
fcc� [5.1043, 5.1043] [13.3973, 13.3973] 0.00

FIG. 3. Plots of LðγÞ and qlðγÞ, see Eq. (7) (normalized to LðγcÞ
and qlðγcÞ, where γc is the maximum of the packing fraction, see
Ref. [16]). LðγÞ is strongly dependent on γ, but ql is basically an
invariant. The value of ψ (NaZn13) is provided in [18].

FIG. 4. Reported experimental phases over the range of γ for
hydrocarbon [18] and DNA [10] NCs. The continuous curve is a
guide to the eye illustrating the general trend. SC stands for single
component, see discussion in text.
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activated. Free energy calculations with soft potentials
[15,16] and hard spheres [43] suggest that those phases
are equilibrium states. Still, rigorous resolution to these
questions will require additional work. Studies in μ-sized
colloidal self-assembly [44], including DNA [45,46],
where according to the OTM [18], particles cannot display
nonhard sphere behavior, may provide even better models
to investigate the tendency towards icosahedral order
than the NCs discussed in this study, as some phases with
fico ¼ 0 become suppressed.
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