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Anomalous dispersion is a surprising phenomenon associated with wave propagation in an even number
of space dimensions. In particular, wave pulses propagating in two-dimensional space change shape and
develop a tail even in the absence of a dispersive medium. We show mathematically that this dispersion can
be eliminated by considering a modified wave equation with two geometric spatial dimensions and,
unconventionally, two timelike dimensions. Experimentally, such a wave equation describes pulse
propagation in an optical or acoustic medium with hyperbolic dispersion, leading to a fundamental
understanding and new approaches to ultrashort pulse shaping in nanostructured metamaterials.
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Introduction.—A light pulse traveling through a 3-D
medium (3 is the number of space dimensions) changes its
shape and develops a tail as it propagates if different
frequency components of the wave travel at different
speeds. This pulse broadening, called dispersion, occurs
in a medium with a frequency-dependent refractive index.
Dispersion of light does not occur in 3-D in a vacuum.
In contrast, in 2-D (three-dimensional space-time) a

pulse changes its shape and forms a tail in a vacuum even
though the wave speed c is a frequency-independent
constant. This dispersion in vacuum in 2-D cannot be
explained in terms of a variable wave speed, and so this
phenomenon is called anomalous dispersion [1,2].
Anomalous dispersion in vacuum is a geometrical phe-
nomenon associated with the dimension of space in which
the waves propagate and it occurs for all kinds of waves,
electromagnetic and acoustic. It occurs in two-dimensional
but not in three-dimensional space.
The rumbling of thunder provides physical evidence of

anomalous dispersion. If we model a lightning bolt as a
long (approximately translationally invariant) vertical line
source, the sound waves that are produced propagate
outward as two-dimensional cylindrical waves. Although
the lightning bolt is instantaneous, an observer does not
hear a “bang,” but rather a rumbling that fades like 1=t, as
sound emanating from successively more distant sections
of the lightning bolt reach the observer [3,4]. This con-
stitutes an intuitive explanation of anomalous dispersion.
For electromagnetic waves, this implies that for 2-D
waveguides conventional ways to compensate ultrashort
pulse broadening will not succeed even if all chromatic
dispersion is carefully compensated.
Classic works on mathematical physics mention the

fundamental role of the number of spatial dimensions in
determining the existence or absence of anomalous
dispersion [1,2]. The present work extends this consider-
ation, showing that the number of time dimensions can also

play a role. Additional effective timelike dimensions,
identified by a different sign in the corresponding term
of the wave equation, can be introduced when waves
propagate in metamaterials with hyperbolic dispersion
[5]. In this Letter, we show that anomalous dispersion
can be completely eliminated if we consider a modified
wave equation that can be realized in hyperbolic meta-
materials, both electromagnetic and acoustic, and is math-
ematically analogous to a 2-D wave equation with two
timelike dimensions instead of one.
Electromagnetic fields in a nondispersive and non-

magnetic anisotropic material with a uniaxial dielectric
permittivity tensor ¯̄ε ¼ diagðεx; εx; εzÞ obey the wave
equation [5]:

utt ¼
c2

εz
ðuxx þ uyyÞ þ

c2

εx
uzz;

where subscripts denote partial derivatives, the scalar field
u≡ Ez represents the z component of the electric field, and
c is the speed of light. This equation becomes the usual
homogeneous 3-D wave equation when εx ¼ εz. However,
it can also represent the wave equation in two time and two
space dimensions when εx is negative and εz is positive.
Such materials are called hyperbolic materials. Anisotropic
materials with diagonal components of the effective per-
mittivity tensor having opposite signs occur naturally [6,7]
or can be constructed as metal-dielectric multilayers [8].
Light propagates inside them as cones [9,10] and their
two-time character has been studied [5,11,12], raising the
intriguing possibility of observing dispersionless propaga-
tion in 2-D. Hyperbolic metamaterials exist for acoustic
waves too [13]. Space-times with two time dimensions also
occur in M-theory [14].
The homogeneous linear wave equation

utt ¼ c2∇2u ð1Þ
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describes waves uðx; tÞ that travel with constant
(frequency-independent) wave speed c through a uniform
medium. This wave equation describes how an initial pulse
at t ¼ 0 given by the initial conditions

uðx; 0Þ ¼ qðxÞ; utðx; 0Þ ¼ pðxÞ ð2Þ

evolves into the wave uðx; tÞ at time t. This initial-value
problem for the wave equation has an explicit quadrature
solution in any space dimension.
Wave propagation in odd-dimensional space is funda-

mentally different from wave propagation in even-
dimensional space. When the space dimension D is odd
and D > 1, waves obey Huygens’s principle [1,2]; that is,
waves created by an instantaneous point source at t ¼ 0
(e.g., a light pulse) take the form of an expanding bubble.
An observer sees blackness until the wave arrives, sees an
instantaneous flash as the wave passes by, and immediately
afterward sees blackness again [see Fig. 1(a)]. Such a wave
propagates on the surface of the light cone. In contrast, in
even-dimensional space an instantaneous point source
gives rise to a wave that develops a tail. An observer sees
blackness until the wave arrives and then sees a flash.
However, the medium does not immediately return to
quiescence; rather, the wave amplitude decays to 0 like
t−α, where α > 0 depends on D. When D ¼ 2, the wave
amplitude decays to 0 like 1=t. The tail of the wave
propagates less rapidly than c as a consequence of
anomalous dispersion. Such a wave propagates on the
surface and in the interior of the light cone [see Fig. 1(b)].
Therefore, in a 2-D vacuum, Huygens’s principle does not
apply as there is anomalous dispersion [1,2].
2-D wave propagation without anomalous dispersion.—

One might wonder whether it is possible to produce a
medium whose dispersive properties exactly cancel the
anomalous dispersion that occurs in 2-D wave propagation.
Such a medium actually exists. The effect of anomalous
dispersion can be canceled if we modify the 2-D wave
equation by adding lower derivatives in time:

utt − t−1ut þ t−2u ¼ c2ðuxx þ uyyÞ: ð3Þ

The one-derivative term models gain, which speeds up the
lagging tail of a 2-D wave. However, this term is too strong,
so to reduce its effect we also introduce the time-dependent
term t−2u. For this artificial medium a flash bulb gives
rise to a wave that does not disperse; the wave remains
confined to the surface of the light cone and does not leak
into the interior of the light cone [see Fig. 1(c)]. Below we
demonstrate analytically this dispersionless propagation.
Furthermore, we show that the wave equation (3) is
equivalent to a constant-coefficient wave equation in two
space and two time dimensions.
1-D homogeneous wave equation.—The 1-D wave

equation is special because its solutions obey Huygens’s

principle when p ¼ 0, q ≠ 0, and they exhibit anomalous
dispersion when q ¼ 0, p ≠ 0. The general solution
uðx; tÞ ¼ fðxþ ctÞ þ gðx − ctÞ to the 1-D wave equation
is a superposition of two waves of unchanging shape
traveling at constant speed c, one moving to the left and
the other moving to the right. The exact solution satisfying
the initial conditions (2) is given by D’Alembert’s formula:

uðx; tÞ ¼ qðxþ ctÞ þ qðx − ctÞ
2

þ 1

2c

Z
xþct

x−ct
dspðsÞ: ð4Þ

3-D homogeneous wave equation.—The exact solution
uðx; tÞ to the initial-value problem for the 3-D wave
equation utt ¼ c2ðuxx þ uyy þ uzzÞ is obtained by using
a construction invented by Kirchhoff. The quadrature
solution is given compactly by Poisson’s formula [1,2]:

uðx; y; z; tÞ ¼ ∂
∂t ðtωct½q�Þ þ tωct½p�: ð5Þ

The spherical mean ωct½ϕ� of the function ϕðx; y; zÞ is an
integral over the surface of a three-dimensional sphere of
radius ct centered at ðx; y; zÞ:

ωct½ϕ�≡
Z
α2þβ2þγ2¼1

dΩ
4π

ϕðxþctα;yþctβ;zþctγÞ; ð6Þ

where dΩ is an infinitesimal solid angle. Equations (5) and
(6) are the complete solution to (1) and (2).
2-D homogeneous wave equation.—The solution to the

initial-value problem for the 2-D wave equation utt ¼
c2ðuxx þ uyyÞ can be expressed in Poisson form (5), but
now the 3-D spherical mean is a weighted average over the
surface of a 2-D disk centered at ðx; yÞ:

ωct½ϕ�≡ 1

2π

Z Z
α2þβ2≤1

dαdβ
ϕðxþ ctα; yþ ctβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2 − β2
p : ð7Þ

We derive the integral in (7) from (6) by applying
Hadamard’s method of descent in which we project from
D ¼ 3 down to D ¼ 2 by assuming that ϕðx; y; zÞ is
independent of z.
The method of descent may be used to project the 2-D

solution (5) and (7) down to D ¼ 1, allowing us to recover
D’Alembert’s solution (4) to the 1-D wave equation. To do
so we choose ϕðx; yÞ in (7) to be independent of y.
Verification of Huygens’s principle in 3-D.—The 3-D

solution uðx; y; z; tÞ in (5)–(6) depends on values of q and p
only at points that are exactly a distance ct from ðx; y; zÞ.
Points that are further from ðx; y; zÞ than ct do not affect the
solution uðx; y; z; tÞ because wave disturbances from such
points cannot travel faster than c. However, the fact that
points that are closer to ðx; y; zÞ than ct also do not affect
the solution uðx; y; z; tÞ is a surprise because there is ample
time for waves emanating from these nearby points to reach
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the point ðx; y; zÞ. It is this feature of 3-D wave propagation
that leads to Huygens’s principle. As stated earlier, 1-D and
2-D wave propagation do not obey Huygens’s principle.
Solution to the initial-value problem for a 3-D point

disturbance.—Consider a 3-D medium that is initially
quiescent and suppose that at t ¼ 0 there is a momentary
light pulse at the origin. We represent such a disturbance by

uðx; y; z; 0Þ ¼ 0; utðx; y; z; 0Þ ¼ δðxÞδðyÞδðzÞ: ð8Þ

To see how this disturbance propagates in time, we
substitute (8) into Poisson’s formula (5) and evaluate the
integral in (6). We obtain the spherical wave form
uðx;y;z; tÞ¼ ð1=4πcrÞδðr−ctÞ where r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p
.

This 3-D wave resulting from the point disturbance (8) is
precisely the expected expanding bubble. An observer at a
distance r from the 3-D point disturbance waits a time
t ¼ r=c and then detects a momentary flash followed by
total quiescence. There is no remnant of this disturbance
when t > r=c.
Anomalous dispersion in 1-D.—Huygens’s principle

does not hold in 1-D because D’Alembert’s solution (4)
for uðx; tÞ depends on pðsÞ for x − ct ≤ s ≤ xþ ct and not
just on pðxþ ctÞ and pðx − ctÞ. To see this, consider the
evolution of a 1-D point disturbance given by the initial
conditions qðxÞ ¼ uðx; 0Þ ¼ 0, pðxÞ ¼ utðx; 0Þ ¼ δðxÞ.
D’Alembert’s formula (4) shows that these initial condi-
tions spawn a wave in the form of a two-sided step function
uðx; tÞ ¼ ð1=2cÞθðct − jxjÞ. An observer at x must wait a
time t ¼ jxj=c before the pulse arrives. After the wavefront
passes, the medium does not return to its initially quiescent
state; an upward displacement of 1=ð2cÞ persists for all
time. Thus, 1-D wave propagation violates Huygens’s
principle [1,2].
There is a special class of initial conditions, pðxÞ ¼

utðx; 0Þ ¼ 0, that creates waves that do obey Huygens’s
principle. This is because waves arising solely from an
initial displacement leave the medium quiescent after they
have passed. For example, consider the initial conditions

utðx; 0Þ ¼ 0; uðx; 0Þ ¼
�
1 − jxj ðjxj < 1Þ;
0 ðjxj ≥ 1Þ:

These initial conditions correspond to an initially triangular
transverse displacement. D’Alembert’s formula shows that
the initial pulse splits into a right-going and a left-going
triangular pulse, each having half the initial amplitude. The
two pulses travel to the right and to the left with speed c and
do not change their shape.
2-D waves and anomalous dispersion.—To show that

2-D wave propagation does not obey Huygens’s principle,
we examine the effect of a 2-D point disturbance:

uðx; y; 0Þ ¼ 0; utðx; y; 0Þ ¼ δðxÞδðyÞ: ð9Þ

This pulse disturbance is an idealization of the initial
conditions created, for example, by a fish surfacing on a
quiet pond. Substituting (9) into (7) and (5), we obtain

uðx; y; tÞ ¼ θðc2t2 − x2 − y2Þ
2πc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − x2 − y2

p : ð10Þ

This formula describes a circular wave that propagates
outward at speed c. An observer at x2 þ y2 ¼ r2 must wait
until time t ¼ r=c before the leading edge of the wave front
arrives. The value of u at the leading edge is infinite, but
after the wavefront passes, the trailing wave decays like 1=t
for large t.
This explains why thunder rumbles, as mentioned

previously. The surface of the earth is locally flat and
two dimensional. Assuming the lightning is a vertical line
source, the sound of thunder propagates across the surface
in the same way that the wave in (10) propagates from a
pointlike disturbance, with a trailing rumbling. An alter-
native way to understand the rumbling is to view it as a 3-D
wave in which the observer on the ground hears waves of
the form (8) that emanate from successively higher and
more distant points on the lightning bolt as t increases [3,4].
This explains the continued and tapering rumbling, and
encapsulates the physical intuition behind the mathematics
of Hadamard’s method of descent which results in anoma-
lous dispersion. The analogy breaks when considering the
finite height of the lightning bolt, so that after some time the
rumbling abruptly stops. One would not expect to notice
this for the light wave, because the light speed is about a
million times greater than the sound speed.
Large-time asymptotic behavior of 2-D waves.—The 1=t

decay in 2-D space of a trailing wave, as in (10), is a general
property of any wave created by a localized disturbance.
To show this, substitute a ¼ ctα and b ¼ ctβ into (7).
Assuming that ϕ has compact support, then

tωct½ϕ� ∼
1

2πc2t

Z Z
R
dadbϕða; bÞ ðt → ∞Þ: ð11Þ

If the integral in (11) exists and is nonzero, then tωct½ϕ� ∝
1=t as t → ∞.
Solution to the modified wave equation (3).—This wave

equation is singular at t ¼ 0, so we do not try to solve (3)
for the general initial conditions (2). However, we impose
the special initial conditions

uðx; y; 0Þ ¼ qðx; yÞ ¼ 0; utðx; y; 0Þ ¼ pðx; yÞ

by following the Kirchhoff construction procedure.
We rewrite (3) in spherical coordinates and seek radially
symmetric solutions uðx; tÞ to

utt − t−1ut þ t−2u ¼ c2ðurr þ r−1urÞ: ð12Þ
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We verify by direct differentiation that

uðr; tÞ ¼ 1

2πc
δðr − ctÞ ð13Þ

exactly solves (12). This verification requires the use of the
identity δðxÞ þ xδ0ðxÞ ¼ 0. By superposing solutions of
this form, we construct a large class of solutions to (3)
containing one arbitrary function of two arguments:

uðx; y; tÞ ¼ tωct½p�; ð14Þ

where

ωct½ϕ�≡ 1

2π

Z
2π

0

dθϕðxþ ct cos θ; yþ ct sin θÞ: ð15Þ

Equation (14) is the exact solution to (3) for the initial
conditions (2) with qðx; yÞ ¼ uðx; y; 0Þ ¼ 0. Of course,
(14) is not the general solution to (3) because the general
solution contains two arbitrary functions of two arguments
each. We cannot express the general solution to (3) in
Poisson form because (12) is time dependent, and thus the
time derivative of a solution is not a solution.
Huygens’s principle holds for this special initial con-

dition because ωct½ϕ� in (15) is determined by the values of
ϕðx0; y0Þ on the surface but not in the interior of the 2-D
light cone ðx − x0Þ2 þ ðy − y0Þ2 ¼ c2t2. Indeed, (13) is the
expanding-bubble wave created by a flash bulb. There is no
ringing effect if q ¼ 0. This is the reverse of what happens
for the 1-D wave equation where Huygens’s principle holds
if p ¼ 0.
Computational simulation of anomalous dispersion.—

The analytical arguments above can be verified by solving
the equations numerically. We have used the differential
equation solver COMSOL MULTIPHYSICS to implement (1)
for three spatial dimensions [Fig. 1(a)], two spatial dimen-
sions [Fig. 1(b)], and for modified wave equation (3)

[Fig. 1(c)]. A delta-function localized initial condition used
in the derivations above in (8) and (9) cannot be modeled
numerically. Instead, we use a Gaussian distribution with a
spatial width, details of which are given in the caption.
Such a field distribution represents an ultrashort broadband
pulse or a unipolar wave packet [15] (a narrowband pulse
would have field oscillations and the effect of this would be
to nearly cancel the 1=t tail that is characteristic of
anomalous dispersion in 2-D space). Our simulations
confirm the analytical results and show that solutions to
the wave equation (1) in 3-D obey Huygens’s principle,
while in 2-D they exhibit anomalous dispersion. However,
the modified 2-D wave equation (3) also obeys Huygens’s
principle with no anomalous dispersion and no trailing tail
behind the pulses.
Wave equation with two space and two time

dimensions.—The change of variable uðx;y;tÞ¼ tvðx;y;tÞ
converts (3) to thewave equation vttþ t−1vt¼c2ðvxxþvyyÞ.
The left side of this equation is the two-dimensional radial
time derivative of the wave equation

vαα þ vββ ¼ c2ðvxx þ vyyÞ; ð16Þ

where t ¼ ðα; βÞ is a two-dimensional vector time variable.
This shows that anomalous dispersion does not occur for
solutions to a linear homogeneous wave equation in a space
of two time dimensions and two space dimensions as long as
the initial disturbance has a vanishing derivative. Of course,
the wave equation (16) contains four independent variables,
while (3) only contains three. Therefore, the solutions thatwe
proved to obey Huygens’s principle and are free of anoma-
lous dispersion obey the constraint of radial symmetry in the
α and β variables, which reduces the number of independent
variables back to three. Although we do not have a general
proof for dispersion-free solutions when this symmetry is
broken, the Green function approach allowing evaluation of
fields from point sources in any media [16,17] suggests that
the effect is robust with respect to breaking this symmetry.
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FIG. 1. Numerical solution of the wave equation in three cases: (a) conventional 3-D wave equation utt ¼ c2ðuxx þ uyy þ uzzÞ;
(b) conventional 2-D wave equation utt ¼ c2ðuxx þ uyyÞ showing anomalous dispersion; (c) modified two-dimensional wave equation
utt − ð1=tÞut þ ð1=t2Þu ¼ c2ðuxx þ uyyÞ with no anomalous dispersion. The insets show the solution at a fixed time. The initial
conditions are zero initial value uðr; t ¼ 0Þ ¼ 0 and a radially symmetric initial time derivative Gaussian distribution utðr; t ¼ 0Þ ¼
exp½−r2=ð2σ2rÞ� with σr ¼ 0.01. The radial variable is r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
for (a) and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
for (b) and (c).
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Since the 3-D wave equation takes the form in (16)
inside hyperbolic metamaterials, these anisotropic media
behave like a two-dimensional space with no anomalous
dispersion. Certain factors in a realistic physical system
could hinder the practical elimination of dispersion:
material dispersion, losses present in typical plasmonic-
based realizations, finite size of the unit cells in the
metamaterial, and existence of other field polarizations
which do not obey the same wave equation inside the
metamaterial. Some of these limitations may be relaxed in
natural hyperbolic materials.
In conclusion, we have explained how the number of

spatial dimensions affects ultrashort pulse propagation and
showed that pulse spreading is different in the 1-D, 2-D, and
3-D cases. In the 2-D case, pulse spreading takes place even
if material dispersion is absent. Using a mathematical
mapping between a wave equation (with time-dependent
coefficients) in 2-D space and a wave equation in 2-D space
with two timelike coordinates, we have shown that the latter
has no anomalous dispersion. Since the wave equation in
2-D space with two timelike coordinates is mathematically
identical to 3-D pulse propagation inside hyperbolic materi-
als, we have shown a possible realization for pulse broad-
ening to be eliminated. Recent developments in ultrashort
broadband pulses present challenges in dispersion compen-
sation to avoid pulse distortion during propagation. The
theory developed here explains for the first time how
metamaterials can evade the distortion of electromagnetic
or acoustic pulses in 2-D space. This development could be
important for ultrafast optical applications such as in
telecommunications, nonlinear optics, and basic physics
research, as well as acoustic and optomechanical applica-
tions involving ultrashort pulses.
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