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We theoretically demonstrate that a type-II class of tilted Dirac cones can emerge in generalized two-
dimensional anisotropic lattice arrangements. This is achieved by introducing a special set of graphynelike
exchange bonds bymeans ofwhich the complete spectrumof the underlyingWeylHamiltonian can be realized.
Our ab initio calculations demonstrate a unique class of eigensolutions corresponding to a type-II class of
Dirac fermionic excitations. Based on our approach, one can systematically synthesize a wide range of
strongly anisotropic band diagrams having tiltedDirac coneswith variable location and orientation.Moreover,
we show that asymmetric conical diffraction, as well as edge states, can arise in these configurations. Our
results canprovide a versatile platform toobserve, for the first time, optical transport around type-IIDirac points
in two-dimensional optical settings under linear, nonlinear, and non-Hermitian conditions.
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The development of the relativistic Dirac equation
incited intense activity along different directions, including,
for example, the possibility for Dirac, Majorana, and Weyl
fermions [1]. While for low energies (below the symmetry-
breaking electroweak transition) the majority of fermions
encountered in the standard model are of the Dirac type, the
case is fundamentally different for neutrinos, whose nature
still remains elusive. Weyl and Majorana particles have also
been considered as viable candidates in interpreting parity-
symmetry violations exhibited by neutrinos, when consid-
ered within the context of an extended standard model [2].
Recently, condensed matter settings and bosonic environ-
ments have provided viable alternatives for the study of
such collective fermionic excitations.
The observation of massless Dirac fermions in graphene

systems [3] was instrumental in instigating similar explora-
tions in other fields beyond solid state physics [4–8], like, for
example, photonics and ultracold atoms [9–14]. Quite lately,
there has been a resurgence of interest in generalized forms
of the so-called Weyl Hamiltonian, which also involves the
identity σ0 matrix, responsible for tilting the Weyl cones.
Based on these generalizations, one can identify two distinct
classes of Weyl points (WPs): (i) type I with pointlike Fermi
surfaces and (ii) type II with conical-like Fermi surfaces.
While type-I WPs can be encountered in various arrange-
ments [15–19], there are ongoing efforts, both experimental
and theoretical, to explore the prospect of type-II Weyl-like
features in lattices [20–25]. In this respect, the Lorentz-
violating type-II Weyl quasiparticles, whose existence is
impossible in particle physics due to the Lorentz-covariant
nature of the standardmodel, are associated with the resulting
strongly tilted Weyl cones. Since condensed matter [20–22]
and bosonic arrangements (atomic, photonic, etc.) [23–25]
are not subject to such constraints, both can provide a fertile
ground for exploring different aspects of type-II WPs.

The question now arises as to whether a similar classi-
fication can be made for Dirac points (DPs). While type-I
Dirac cones (DCs) are common in honeycomb configura-
tions and other two- (2D) and three-dimensional (3D)
materials [3–14], this is not the case for type-II DCs. In
recent studies, type-II Dirac semimetals [26–29] and 3D
topological photonic crystal structures [30] have been
demonstrated. Along these lines, of interest would be to
identify 2D photonic systems with analogous dispersion
characteristics, akin to those proposed in solid state physics
[31,32]. In this respect, one can experimentally explore a
number of possibilities, including photonic Landau levels
[12,13], Zitterbewugung [33], and Klein tunneling [34], in
highly anisotropic environments.
In this Letter, we investigate, for the first time, an all-

dielectric noncentrosymmetric photonic-lattice realization,
whose band structure exhibits 2D type-II DPs. By mim-
icking the molecular bonds in an artificial carbon allotrope
(graphyne [35]), we propose a variant of a centered-square
lattice having adjustable waveguide chains between adja-
cent sites. In this manner, the dispersion diagrams of
this lattice can transition from type-I to type-II DCs, by
gradually ordering the exchange bonds involved in the
generalized Weyl Hamiltonian. Based on ab initio calcu-
lations, we have developed a systematic methodology,
through which one can at will control the orientation
and position of the ensued highly anisotropic DCs.
Furthermore, we demonstrate the existence of edge states
in ribbon geometries, and we show that asymmetric conical
diffraction can take place, by exciting the graphynelike
lattice near the type-II DP. The degrees of freedom offered
by our structure, along with the ability to fine-tune its
design parameters via existing high-precision laser -writing
techniques [36], can enable further the understanding of the
underlying transport mechanisms associated with these
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exotic quasiparticles under linear, nonlinear, and non-
Hermitian conditions [37–40].
We begin our theoretical analysis by considering the

generalizedWeyl Hamiltonian in an SU(2) space, as spanned
by the Pauli matrices. In this representation, near a singular
DP, the Hamiltonian can be effectively expressed as

H ¼
X2

n¼0

un · kσn; ð1Þ

where un ¼ ðuxn; uynÞ is the velocity vector, k ¼ ðkx; kyÞ is
the transverse wave vector, σ0 is the unitary matrix, and σn,
for n ¼ 1, 2, are the first two Pauli matrices. By employing
an appropriate transformation [7], Eq. (1) can assume the
form of the minimal Weyl Hamiltonian H ¼ υx0kxσ

0þ
υy0kyσ

0 þ υx1kxσ
1 þ υy2kyσ

2, where υx=y0=1 now represent effec-
tive velocity terms. The case of isotropic Dirac cones in
graphene lattices can be simply retrieved, when υx0 ¼ υy0 ¼ 0

[Fig. 1(a)]. On the other hand, anisotropic or tilted DCs can
emerge only provided that υ0x ≠ 0 or υ0y ≠ 0. As these
coefficients increase in size, the resulting tilt becomes even
stronger. The critical condition ðυx0=υx1Þ2 þ ðυy0=υy2Þ2 > 1

marks the onset of type-II Dirac points [Fig. 1(b)]. In this
regime, the photonic band diagram can become sufficiently
anisotropic, so tipping of the cones can take place. As an
upshot, the intersection of the upper and lower photonic
bands with the β ¼ 0 plane (Fermi level) leads to hyperbolic
curves. Moreover, within the same band, the group velocity
or gradient of the propagation constant β does not change

sign at the singularity point. These represent unique sig-
natures of type-II DPs [41], that are otherwise absent in
conventional type-I DPs.
In order to investigate the complete Weyl Hamiltonian

spectrum, we first consider a centered-square lattice, as
shown in Fig. 1(c). Every site consists of a single-mode
waveguide element that is evanescently coupled to its
neighbors. Based on tight binding considerations, one
can then introduce auxiliary diagonal terms in the
Hamiltonian of the system, that can account for beyond-
nearest-neighbor interactions via the hopping term t0. Here,
we will study the most general case, where the nearest-
neighbor interactions are unequal ðt1 ≠ t2 ≠ t3 ≠ t4Þ.
Under these assumptions, this generalized arrangement
can be considered as a superposition of two displaced
square sublattices A and B [Fig. 1(c)], whose coupled
evolution equations can be described via

i∂zφAm;n
¼

X

p¼0;1
q¼0;1

tðpqÞφBm−p;n−q
þ t0

X

q¼−1;1
φAm;nþq

; ð2aÞ

i∂zφBm;n
¼

X

p¼0;1
q¼0;1

tðpqÞφAmþp;nþq
þ t0

X

q¼−1;1
φBm;nþq

; ð2bÞ

where φA and φB represent optical field modal amplitudes
at site ðm; nÞ and tðpqÞ the coupling coefficients between
sublattices A and B, respectively.
The Floquet-Bloch solutions of Eqs. (2) can be directly

obtained from the effective Hamiltonian

Hk ¼
� ~hðkÞ h�ðkÞ
hðkÞ ~hðkÞ

�
;

with hðkÞ¼ðt1þt3ÞcosK1þðt2þt4ÞcosK2þi½ðt1−t3Þ
sinK1−ðt2−t4ÞsinK2�, ~hðkÞ¼2t0cosky, K1¼ðkxþkyÞ=2,
and K2 ¼ ðkx − kyÞ=2. Moreover, the emergence of DCs
requires the coalescence of the eigenvalues of H at the
singularity, which is satisfied iff jhðkÞj ¼ 0. This implies
for the location kDP ¼ ðkDPx ; kDPy Þ of the Dirac points that

kDPx ¼ 2 tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
ðt3 þ t4Þ2 − ðt1 þ t2Þ2
ðt3 − t4Þ2 − ðt1 − t2Þ2

s

; ð3aÞ

kDPy ¼ 2 tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
ðt3 þ t2Þ2 − ðt1 þ t4Þ2
ðt3 − t2Þ2 − ðt1 − t4Þ2

s

: ð3bÞ

In this respect, the velocity terms appearing in Eq. (1)
are given by ux0 ¼ ∂ ~hðkÞ=∂kx, uy0 ¼ ∂ ~hðkÞ=∂ky, ux1¼
∂RefhðkÞg=∂kx, uy1¼∂RefhðkÞg=∂ky, ux2¼∂ImfhðkÞg=
∂kx, and uy2 ¼ ∂ImfhðkÞg=∂ky. Additionally, the gradient
of the dispersion relation w ¼ ðwx; wyÞ ¼ ∂βðkÞ=∂k
can be acquired from wx¼�∂ðjhðkÞjÞ=∂kx and wy ¼
∂½ ~hðkÞ � jhðkÞj�=∂ky. In this configuration, the factor

FIG. 1. Dispersion band diagrams near the DPs for: (a) type-I
DCs with a pointlike Fermi surface and (b) type-II DCs with a
conical-like Fermi surface. (c) The centered-square lattice is
shown in 3D (left), while the constituent A (blue) and B (red)
square sublattices, along with their inter- and intracouplings
ðt1; t2; t3; t4; t0Þ, are depicted in a magnified 2D view (right).
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∂ ~hðkÞ=∂ky is responsible for the tilt of the DCs along the y
direction. Based on the previous results, it is clear that the
induced tilt depends solely on the hopping term t0, while
the position and slope of the cones are only functions of the
couplings t1, t2, t3, and t4.
Both velocities ðux0; uy0Þ appear effectively as primary

diagonal terms in the Hamiltonian matrix. Because of their
linear dependence on the wave number k, they cannot lead
to a gap, since the corresponding terms in the Hamiltonian
attain a zero value at the degenerate Dirac point. This
behavior is quite different from that encountered in
deformed honeycomb configurations with constant diago-
nal detuning terms [37], where Dirac cones can be
sustained only if non-Hermitian gain and loss elements
are also employed. In our system, instead, gapless states
can be retained, while at the same time strongly tilted
type-II DCs can be introduced. What makes this possible is
the high degree of flexibility offered by the five design
parameters ðt1; t2; t3; t4; t0Þ. The only restriction arises from
the fact that these parameters must be chosen in such a way
that wave vector components ðkDPx ; kDPy Þ are real. Note that,
in the isotropic case ðt1 ¼ t2 ¼ t3 ¼ t4Þ, Eqs. (3) exhibit a
singularity. Thus, perturbations around this point can lead
to a topological creation or destruction of the DCs.
Based on these considerations, we then synthesize the

proposed lattice model. To do so, the nearest-neighbor
hopping terms must be unequal, while the next-nearest-
neighbor coupling strength t0 is enhanced, in order to
produce highly anisotropic DCs. In this work, both aspects
are simultaneously addressed by incorporating waveguide
chains that play a role akin to that of exchange bonds
among the molecular units of graphyne. Here, the sites of
the original configuration [Fig. 1(c)] are referred to as the
main lattice sites (belonging to sublattices A and B) so as to
distinguish them from the additional waveguide (chain)
elements, which will be subsequently introduced.
To examine the properties of such chains, we herein

assume, for simplicity, four cores arranged in a one-
dimensional (1D) mirror-symmetric formation, as shown
in Fig. 2(a). In this configuration, the modal field ampli-
tudes φi satisfy

βφ−2 ¼ V2φ−2 þ t12φ−1; ð4aÞ

βφ−1 ¼ V1φ−1 þ t12φ−2 þ t11φ1; ð4bÞ

βφ1 ¼ V1φ1 þ t11φ−1 þ t12φ2; ð4cÞ

βφ2 ¼ V2φ2 þ t12φ1; ð4dÞ

where V1 and V2 represent on-site optical potential terms.
Given the underlying mirror-inversion symmetry exhibited
by this chain [Fig. 2(a)], one can find that, around the
singularity point ðβ ≈ 0Þ, Eqs. (4) are effectively reduced to

βφ2 ¼
�
V2 −

t12V1

V2
1 − t211

�
φ2 þ

t212t11
V2
1 − t211

φ−2; ð5aÞ

βφ−2 ¼
t212t11

V2
1 − t211

φ2 þ
�
V2 −

t12V1

V2
1 − t211

�
φ−2: ð5bÞ

In other words, Eqs. (5) provide an alternative description
of the system, since the action of the two central cores in the
chain can be essentially described by an effective hopping
parameter ~t ¼ t212t11=ðV2

1 − t211Þ, as shown in Fig. 2(a).
Without any loss of generality, we can extend this same
concept in similar arrangements involving more waveguide
elements. Furthermore, by locally perturbing a waveguide
anywhere in the 1D lattice (e.g., by slightly changing its
refractive index), we can increase or decrease this effective
hopping term ~t. This flexibility allows for the realization of
generalized Weyl Hamiltonians near a degenerate point.
An example of such a lattice topology, supporting

isotropic type-I DPs, is shown in Fig. 2(b). In addition
to the unit cell of Fig. 1(c), three main waveguide chains

FIG. 2. (a) 1D chain of waveguides (left) and equivalent model
(right), consistingnowofonlythe twoedgewaveguidecorescoupled
via an effective hopping parameter ~t. (b) The centered-square lattice,
after the inclusionof themainwaveguidechains, is shownonthe left.
The corresponding dispersion diagram, together with a magnified
viewof the linear dispersion in thevicinityof a degenerate type-IDP,
isshownonthe right. (c)The latticeafter incorporating thesecondary
waveguidechainsalongtheydirection(leftpanel).Forthemitigation
of undesired effects, stemming from the asymmetric couplings
between adjacent waveguide chains, we slightly alter the geometry
(middle panel) to locally attain a more symmetric topology in the
vicinity of the main lattice points, as depicted on the right.
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(MCs) have been inserted between nearest-neighbor sites in
such a way so as to satisfy the relations t1 ¼ t2 ¼ t4 and
t3 ¼ t0 ≈ 0 (thus inducing a P-symmetry breaking). For this
set of parameters, Eqs. (3) admit real solutions, and hence
isotropic DCs emerge at the wave vector locations kDP

1 ¼
ð2π=3; 2π=3Þ and kDP

2 ¼ ð−2π=3;−2π=3Þ. Subsequently,
the optical band structure can be retrieved by numerically
solving the paraxial wave equation (Floquet-Bloch solu-
tions) for this unit cell. Our results are in excellent
agreement with those obtained from the tight-binding
approximation, as shown in Fig. 2(b). In this same figure,
the upper and lower photonic bands correspond to the
lowest-order modes (even and odd), with respect to the
nodes of sublattices A and B. To implement this configu-
ration, we use the following physical parameters: The
diameter and refractive index of the waveguides (for both
the main lattice points and the MCs) are set to beD ¼ 6 μm
and n ¼ nMC ¼ 1.452, respectively, while the refractive
index of the background medium is nb ¼ 1.45 ðΔn0 ¼
ΔnMC ¼ 0.002Þ at a wavelength of λ ¼ 1550 nm. Such
values can be readily attained experimentally via laser-
writing techniques [36] or optothermal nonlinearities [42].
In what follows, we introduce anisotropicity in the

photonic band diagram by means of secondary waveguide
chains (SCs) between next-nearest-neighbor sites, as
shown in Fig. 2(c). To identify where the transition from

a type-I to type-II DP will occur, we numerically investigate
different cases [Figs. 3(a)–3(d)], where we progressively
increase the refractive index difference ΔnSC of the
secondary chain waveguides while keeping the remaining
parameters the same. In Fig. 3(a), the Dirac point is of
type I, as long as ΔnSC ≤ 1.07Δn0. Once ΔnSC exceeds
these values, a strongly tilted DC emerges [Figs. 3(b) and
3(c)]. In this case, the intersection of the upper and lower
photonic bands with the β ¼ 0 plane leads to hyperbolic-
like contours (open “Fermi” surfaces), which is a character-
istic signature of type-II DPs.
To gain insight into the underlying transport processes,

we simulate the optical beam dynamics in a lattice,
consisting of 2500 unit cells. A Gaussian beam is used
to probe these effects near the degenerate DP. When the
Dirac cones are strongly tilted, we numerically observe a
light ring, which now constantly drifts along the direction
predicted by the slope of the respective asymmetric band
diagram in the vicinity of a type-II singularity [Fig. 3(d)].
On the other hand, isotropic propagation is expected [11],
when the secondary chains are excluded [inset in Fig. 3(d)].
Given its nontrivial topology, of interest would be to study

the characteristics of edge states, supported by this gener-
alized centered-square lattice. Along these lines, we truncate
this arrangement laterally in the y direction (ribbonlike
structure), and, subsequently, we obtain the band spectrum

FIG. 3. Dispersion curves (type-I DP) along kx ¼ 2π=3 (left) and ky ¼ 2π=3 (right), corresponding to the noncentrosymmetric
graphynelike arrangement, depicted in the right panel in Fig. 2(c). Each graph is related to a different value of the refractive index
difference of the secondary chains ðΔnSC ¼ 1; 1.03; 1.07 × Δn0Þ. In all cases, the refractive index of the main chains is kept identical to
that of the main lattice nodes ðΔnMC ¼ Δn0 ¼ 0.002Þ. By increasing the value of ΔnSC, this tilt becomes pronounced enough that
tipping of the cones takes place (type-II DCs). This becomes evident for ΔnSC ¼ 1.3Δn0 in (b), which depicts the respective bulk band
structure throughout the Brillouin zone (right), along with a magnified view of the type-II DPs (left, inset: hyperboliclike intersection
with the β ¼ 0 plane). The linear dispersion near the Dirac point, located at ðkx0 ; ky0Þ ¼ ð2π=3; 2π=3Þ, is shown in (c). In (d),
asymmetric and symmetric conical diffraction (inset) is demonstrated, after exciting (near the generate point) the lattices of Figs. 2(c)
(ΔnSC ¼ 1.3Δn0) and 2(b) (ΔnSC ¼ 0), respectively. In (e) and (f), the band diagram and respective eigenmode distribution are depicted
for top (left) and bottom (right) ribbonlike edge states, supported by the lattice in the right panel in Fig. 2(c) for ΔnSC ¼ 1.3Δn0.
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as a function of kx. As shown in Fig. 3(e), two distinct
classes of modes emerge: (i) bulk modes [arising from the
bulk band structure of Fig. 3(b)] and (ii) edge modes
[existing at the edges—Fig. 3(f)]. The inherent anisotropy
of the lattice, along with the different edge topologies,
leads to nonstationary counterpropagating edge states.
Their respective intersection in the band diagram is dictated
by the strength of the graphynelike exchange bonds.
Note that the time-invariant nature of the proposed
model indicates that the nonchiral edge states cannot be
protected against random backscattering defects [17]. This
latter feature can be introduced, provided the waveguide
elements are appropriatelymodulated along the propagation
direction [25,43].
In conclusion, in the present Letter we have theoretically

provided the necessary conditions for the emergence of
type-II Dirac cones in a noncentrosymmetric version of
the centered-square photonic lattice with graphynelike
exchange bonds. By doing so, we demonstrated that
the photonic dispersion diagram can be modified at will,
thus allowing control over the orientation, location, and
anisotropy of the emerging DCs. Also, effects like asym-
metric conical diffraction and edge states in ribbonlike
structures have been shown to exist near the type-II point
of degeneracy. The proposed configurations can be used to
investigate exceptional point dynamics in the vicinity of
type-II DPs in non-Hermitian and PT-symmetric systems.
This class of massless type-II Dirac fermions may also lead
to novel topologically nontrivial architectures and might
pave the way to explore complex light behavior in highly
anisotropic dispersion environments.
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