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Effective cavities can be optically induced in atomic media and employed to strengthen optical
nonlinearities. Here we study the integration of induced cavities with a photonic quantum gate based on
Rydberg blockade. Accounting for loss in the atomic medium, we calculate the corresponding finesse and
gate infidelity. Our analysis shows that the conventional limits imposed by the blockade optical depth are
mitigated by the induced cavity in long media, thus establishing the total optical depth of the medium as a
complementary resource.
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Optical nonlinearities at the few-photon level, manifested
by effective strong interactions between individual photons,
provide a platform for investigating correlated photonic
states [1–5] and enable optical quantum computing and
networks [6–8]. The effective interaction between photons
is mediated by strongly coupling them to single quantum
emitters or to ensembles of cooperating emitters [9,10].
When employing single atoms, strong coupling is obtained
using high-finesse optical cavities [11–15]. Cooperating
ensembles, namely, interacting Rydberg atoms, can reach
the strong-coupling regime without a cavity [16–20].
The cooperativity of Rydberg atoms stems from a

blockade mechanism due to strong Rydberg-Rydberg
interactions [21–23]. Within the so-called blockade vol-
ume, the narrow-band optical excitation of Rydberg states
is limited to one collective state. Consequently, the block-
ade volume functions as a “superatom” with a cross section
enhanced by the large number of blockaded atoms [24–26].
The optical depth 2dB of the blockade volume is the key
parameter determining the strength of the optical non-
linearity. For quantum nonlinear optics, high-fidelity oper-
ation of photonic gates requires dB ≫ 1 [5,17–19,27–31],
with the fundamental limit imposed by the relation between
dissipation and dispersion near resonance; see Fig. 1(a).
Unfortunately, the present record 2dB ¼ 12.5 [19] limits
the fidelity to ∼50% and is difficult to surpass [32,33].
It has been debatedwhether the limit imposed bydB can be

circumvented in long media, utilizing their large total optical
depth 2d ≫ 2dB; see Fig. 1(b). For example, two simulta-
neous photons copropagating along several blockade vol-
umes may have longer effective interaction time, but the
overall fidelity is undermined by spatial entanglement
between the pulses and by the narrow transmission band-
width in longmedia [5,17,27,30,34,35]. This Letter provides
a positive answer to this longstanding question.We show that
the Rydberg-mediated interaction can be strengthened by
utilizing long media as effective cavities, whose finesse F
grows as the square root of the total optical depth 2d.

We employ a standing-wave dressing field to imprint a
Bragg grating in the medium and induce an optical band
gap. This scheme was originally proposed for enhancing
nonlinear effects via dynamical control of the band gap
[36,37]. We follow Hafezi et al. [38] and exploit the
transmission resonance outside the band gap, where the
Rydberg-mediated interaction is enhanced without dynami-
cal control. The enhancement we find is similar to that
obtained with actual cavities [11,39–42]: the blockaded
optical depth effectively experienced by the circulating
photons is given by FdB [43,44]; see Fig. 1(a). To render a
system with single input and output ports, as required
for high-fidelity gate operation, we introduce a Sagnac
configuration [Fig. 2(a)]. While the maximal finesse of
optically induced cavities scales ∝ d [38], we show that the
overall performance of a quantum phase-gate improves
approximately ∝

ffiffiffi
d

p
when accounting for dissipation.

Very recently, similar results were reported for so-called
“stationary light” in the strong-coupling (noncooperative)
regime [45].
Rydberg phase gate.—We analyze a gate model based

on photon storage [18,35,43,44,46], illustrating the limi-
tations posed by small dB and the resolution offered by a
cavity. Here a propagating “probe” photon acquires the
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FIG. 1. (a) When light traverses an atomic medium and acquires
a nonzero phase, it always experiences some loss. Given the
resonant optical depth 2dB, the blue circle traces the relation
between phase and loss for two-level atoms or under the
conditions of ideal EIT [Eq. (1), see the text]. In a cavity, the
radius of the circle effectively grows with the cavity finesse F
(red). (b) A phase gate based on Rydberg blockade by a stored
photon.
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phase ϕ ¼ π conditional on the storage of a “gate” photon
in the medium [Fig. 1(b)]. Electromagnetically induced
transparency (EIT) [47] in the ladder arrangement shown in
Fig. 2(b) is employed. First, EIT is used to store the gate
photon as a collective excitation comprising one Rydberg
atom. Afterwards, the probe photon traverses the medium
via EIT utilizing a different Rydberg level.
We use the subscripts j ¼ 0, 1 to denote the cases without

(j ¼ 0) and with (j ¼ 1) the stored Rydberg excitation. In
the first case, the probe photon experiences the EIT
susceptibility χ0. In the second case, within a blockade
radius rB around the stored excitation, the EIT conditions are
violated due to the Rydberg-Rydberg interaction [48], and
the probe photon experiences the bare susceptibility of a
two-level atom χ1. To describe the dynamics of a single
probe photon, it is sufficient to consider the linear suscep-
tibilities of the medium. A conditional phase gate is thus
obtained when ϕ ¼ Re½χ1 − χ0�krB ¼ π, with k being the
optical wave vector.
To simplify the discussion, we include no decay of the

Rydberg excitation, assuming it is negligible compared to
the power broadening jΩ2=ðΔþ iΓÞj, with 2Ω being the
Rabi frequency of the classical control field, 2Γ the decay
rate of the intermediate state, and Δ the detuning from the
intermediate state. The susceptibilities then acquire the form
[49] krBχj ¼ −dBΓ=½iΓþ Δ − ð1 − jÞΩ2=δ� for j ¼ 0, 1,
where dB is the optical depth over the blockade radius rB,
and δ is the two-photon detuning from the Rydberg state.
We observe that krBχj satisfy the relation [50]

jkrBχj − idB=2j ¼ dB=2 for both j ¼ 0; 1; ð1Þ

forming identical circles in the complex plane; see Fig. 1(a).
Therefore, loss of the probe photon (∝ Imχj) is unavoidable
whenever ϕ ≠ 0, which limits the gate fidelity. The operat-
ing point that minimizes the loss has an elegant solution
when thewholemedium is blocked (d ¼ dB [19]). Then, the

loss is quantified by the mean absorption with and without
the stored Rydberg excitation ϵ ¼ Im½χ1 þ χ0�krB, and we
observe that ϕ and ϵ form a circle too, now with twice the
radius jϕþ iϵ − idBj ¼ dB. It follows that ϕ ¼ π requires
dB ≥ π; for dB ≫ π, the loss ϵ ¼ π2=ð2dBÞ scales inversely
with dB.
The above limitation can be overcome by incorporating

an optical cavity with single input and output ports, such as
single-side cavities [12–14,43,44,51] or ring cavities
[15,52,53]. For example, consider a ring cavity of length
l containing the atomic medium [Fig. 3(a)]. With ρ being
the reflection amplitude of the coupling mirror, the cavity
output amplitude is given by uj ¼ ðρþ eiθjÞ=ð1þ ρeiθjÞ
[54]. The (complex) phase acquired along the ring θj ¼
klþ krBχj includes the medium response with (j ¼ 1) and
without (j ¼ 0) the stored Rydberg excitation. For a bare
cavity tuned to resonance kl ¼ π, gating the medium
between χ0 and χ1 shifts the cavity across its resonance
and alters the reflected phase from −π=2 to π=2. Minimal
absorption from the medium is obtained around the bottom
of the circles described by Eq. (1), where Im½krBχj�≈
Re½krBχj�2=dB. Substituting this into θj and uj, and
defining again the loss and conditional phase

ϵ ¼ − logðju1jÞ − logðju0jÞ;
ϕ ¼ argðu1Þ − argðu0Þ; ð2Þ

we find the relation

ϵ ¼ ð4πÞ=ðFdBÞ½1 − cosðϕ=2Þ�; ð3Þ

where the finesse F ¼ πð1þ ρÞ=ð1 − ρÞ. For ϕ ¼ π and
comparing to ϵ ¼ π2=ð2dBÞ obtained without a cavity, we
find that dB is effectively increased by the factor πF=8; see
Fig. 3(b).
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FIG. 2. (a) Optically induced grating in a Sagnac interferom-
eter. (b) Atomic level scheme. A control field (green) couples the
probe transition (red) to a Rydberg state, rendering EIT. (c) To
induce a cavity, the EIT resonance frequency is longitudinally
modulated by a far-detuned dressing standing wave (blue). For
example, this scheme can be implemented with rubidium atoms
using a probe, control, and dressing fields at 780, 479, and
475 nm, respectively. The angles between the optical axis and the
dressing beams are tuned to form a standing wave with a period
that is half the probe wavelength.
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FIG. 3. Cavities encircling atomic media. (a) Ring cavity.
(b) The loss vs phase, defined in Eq. (2), for the ring cavity
(F ¼ 20π, 2dB ¼ 4π). The exact relation in Eq. (3) (green) is
well approximated by a circle (dashed purple) with a radius πF=8
larger than that obtained with no cavity (red). (c) A symmetric
Fabry-Pérot cavity inside a Sagnac interferometer is equivalent to
a ring cavity. (d) Fabry-Pérot cavity.
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A cavity induced by uniformly dressing the medium, as
we shall analyze, is akin to a symmetric Fabry-Pérot cavity,
with two pairs of input-output ports. To recover a single-
port configuration, we place the two-port cavity inside a
Sagnac interferometer, as depicted in Fig. 3(c). The

incoming light impinges on the cavity from both sides,
with the relative phase tuned by a phase plate φ.
The transmission matrix from the external input ports to

the external output ports of the Sagnac beam splitter (BS) is
calculated from

1

2

�
1 i
i 1

�zfflfflfflfflffl}|fflfflfflfflffl{BS out �
1 0

0 eiφ

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{φ-plate �
0 1

1 0

�zfflfflfflfflffl}|fflfflfflfflffl{flip modes �
tj rj
rj tj

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{cavity �
1 0

0 eiφ

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{φ-plate �
1 i
i 1

�zfflfflfflfflffl}|fflfflfflfflffl{BS in

; ð4Þ

with the transmission and reflection amplitudes of the bare
cavity [see Fig. 3(d)] given by [55]

tj ¼
ð1 − ρ2Þeiθj
1þ ρ2e2iθj

and rj ¼ i
ρð1þ e2iθjÞ
1þ ρ2e2iθj

: ð5Þ

By choosing φ ¼ π=2, the matrix (4) becomes diagonal,
and the light is back reflected to the port it arrived from.
The output amplitude for the first port is rj − tj, which
exactly equals iuj of the ring cavity (with the shift
θj ↦ θj − π=2). Therefore, while the phase shift of a bare
two-port cavity is limited to π=2 per port around the
resonance [56], the Sagnac setup enables a π conditional
phase shift, regaining the single-port properties. We stress
that the Sagnac interferometer does not form another cavity,
and field buildup occurs only inside the cavity.
Bragg grating.—We now turn to consider cavities

formed by finite media with a uniform longitudinal
modulation. A modulation on the wavelength scale couples
the right (þ) and left (−) propagating modes E�ðzÞ
according to

∂E⃗ðzÞ
∂z ¼ i

�
σ κ
−κ −σ

�
E⃗ðzÞ; where E⃗ðzÞ ¼

�
EþðzÞ
E−ðzÞ

�
:

ð6Þ

For example, in a Bragg grating with a modulated suscep-
tibility χðzÞ ¼ χDC þ χAC cos ð2kszÞ, the coupling matrix
elements for a probe with wave number k are given by
σ ¼ k − ks þ kχDC=2 and κ ¼ kχAC=4 [57]. The solution
of Eq. (6) can be written for a uniform grating of length L as
E⃗ðzÞ ¼ FL−zE⃗ðLÞ, where

Fz ¼
1

λ

�
λ cosðλzÞ − iσ sinðλzÞ −iκ sinðλzÞ

iκ sinðλzÞ λ cosðλzÞ þ iσ sinðλzÞ
�
;

with the eigenvalues �λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − κ2

p
. For a field incom-

ing at z ¼ 0, we substitute EþðLÞ ¼ 1 and E−ðLÞ ¼ 0 and
obtain the transmission and reflection coefficients, t0 ¼
1=Eþð0Þ and r0 ¼ E−ð0Þ=Eþð0Þ. The transmission spec-
trum, shown in Fig. 4(a) for a specific set of parameters,
exhibits a wide reflection “band gap” at σ ≈ 0 and narrow

transmission resonances around it. These resonances arise
due to the finite length of the medium and correspond to the
oscillations of Fz outside the band gap, where the eigen-
values �λ are predominantly real. The intensity profiles
along the medium ∥E⃗ðzÞ∥2 ¼ jE2þj þ jE2

−j at the first four
resonances ReðλLÞ ≈ mπ ðm ¼ 1–4Þ are shown in the inset
of Fig. 4(a). The intensity builds up in the bulk, similarly to
a cavity resonance [38,57].
The limitation discussed earlier for Fabry-Pérot cavities

applies here as well—the symmetric two-port cavity
formed by the uniform grating cannot alone perform an
efficient conditional π-phase operation. We thus invoke the
Sagnac setup, as depicted in Fig. 2(a). Then the overall
output amplitude calculated from (4) is r0 − t0, and the
field in the bulk is
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FIG. 4. Transmission spectra of (a) bare Bragg grating, and [(b)
and (c)] grating inside a Sagnac interferometer. We compare
(solid blue) a purely dispersive Bragg grating (κL ¼ 5.24,
Imσ ¼ 0) with (dashed red) a grating formed by dressing an
atomic medium (d ¼ 104, and the dressing parameters are
chosen to minimize the gate loss when 2dB ¼ 4π). The reso-
nances of the bare grating arem ¼ �ð1; 2; 3; 4;…Þ, but onlym ¼
1;−2; 3;−4;… retain the steep phase slope in the Sagnac setup.
Insets: longitudinal intensity profiles ∥E⃗ðzÞ∥2 at the correspond-
ing resonances �m ¼ 1–4 (blue, red, orange, and purple).
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E⃗SagðzÞ ¼
1ffiffiffi
2

p
�
E⃗ðzÞ −

�
0 1

1 0

�
E⃗ðL − zÞ

�
: ð7Þ

Figures 4(b) and 4(c) show the resulting spectrum and the
intensity profiles at the first four resonances. Evidently,
only the resonances m ¼ þ1;−2;þ3;−4;…, having anti-
symmetric modes, are enhanced in the Sagnac setup. At
these resonances, the slope of the output phase and the
intensity buildup B ¼ maxz∥E⃗SagðzÞ∥2 > 1 scale linearly
with the effective finesse F ≈ πB. The strongest resonance
is obtained for m ¼ þ1, where λL ¼ πð1þ iαÞ. Up to first
order in the loss α ≪ 1, we find the overall transmissivity T
and finesse F ,

T ¼ jr0 − t0j2 ≈
���� 1 − ακL
1þ ακLq

����2 and

F ≈
1

π

���� ð1þ qÞκL
1þ ακLq

����2; ð8Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2=ðκLÞ2

p
.

Induced cavities in atomic media.—The atomic scheme
we analyze in order to optically induce a grating is shown in
Fig. 2(c). A standard Rydberg EIT system as outlined
earlier is coupled to an auxiliary atomic state by a dressing
standing wave with wave vector ks ≈ k [36]. The far-
detuned dressing field gives rise to a longitudinally periodic
light shift of the Rydberg state, effectively modulating the
two-photon detuning δmodðzÞ ¼ δþ Δs cos ð2kszÞ. Staying
well within the EIT linewidth jδmodj ≪ jΩ2=ðΔþ iΓÞj, the
EIT susceptibility kLχ0 ¼ −2dΓ=ðiΓþ Δ − Ω2=δmodÞ can
be expanded as

χ0ðzÞ ≈
2d
kL

δmodðzÞ
Ω2=Γ

�
1þ i

δmodðzÞ
Ω2=ðΓ − iΔÞ

�
: ð9Þ

We now substitute 2 cos2ð2kszÞ ¼ 1þ cosð4kszÞ and
neglect the fast oscillating term cosð4kszÞ [36,58]. The
terms proportional to cosð2kszÞ are identified as χAC, and
the rest comprise χDC. Finally, the Bragg coupling coef-
ficients are given by [57]

σ ¼ Δkþ k
χDC
2

¼ Δkþ d
L

�
xþ ðx2 þ 2y2Þ

�
iþ Δ

Γ

��

κ ¼ k
χAC
4

¼ d
L

�
yþ 2xy

�
iþ Δ

Γ

��
; ð10Þ

where x ¼ δΓ=Ω2, y ¼ ΔsΓ=ð2Ω2Þ, and Δk ¼ k − ks. The
imaginary parts of σ and κ account for loss, absent in an
ideal Bragg grating.
We focus on the first resonance λL ¼ πð1þ iαÞ.

Assuming a frequency modulation well within the EIT
line x, y ≪ 1, the absorption is given by α ¼ d2x3=π2. With
this and Eq. (9), in the large d limit, the finesse is
insensitive to Δ=Γ and becomes F ¼ð1þ ffiffiffiffi

T
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−TÞdp

(see Ref. [59] for details). The maximal finesse F ≈ 1.3
ffiffiffi
d

p
is obtained for T ¼ 1=4, as shown in Fig. 5.
The loss T < 1 is of course the unavoidable downside of

using atomic resonances, and we desire to maximize T and
F simultaneously. For 1 − T ≪ 1, the tradeoff arising
from F ∝

ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
can be heuristically estimated by adding

1 − T to the loss ϵ in Eq. (3) and minimizing ϵ with respect
to F . The result is F ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πd=dB

3
p

, which scales as
ffiffiffi
d3

p
rather than

ffiffiffi
d

p
[59].

We find by numerical optimization that the exact
performance of the scheme is slightly better than the above
estimation. In the numerics, we describe the blockade effect
around the stored Rydberg excitation using the suscep-
tibility χ1 at jz − L=2j < rB. Outside the blockade volume,
we use Eq. (6), so that the medium transmission is
described by

E⃗ð0Þ ¼ FL
2
−rB

�
e−ikrBχ1 0

0 eikrBχ1

�
FL

2
−rB E⃗ðLÞ: ð11Þ

We calculate the Sagnac output iuj ¼ rj − tj, substitute
into Eq. (2), and minimize the loss ϵ while requiring ϕ ¼ π.
As shown in Fig. 5, the optimization finds that ϵ scales as
∼d−0.43. We conclude that optically induced cavities can
enhance the performance of photonic quantum gates.
We have examined a specific extension of EIT, utilizing

far-detuned dressing. An alternative extension is a dual-V
configuration rendering stationary light [37,45,58,60,61].
Here counterpropagating control fields couple the two
propagation directions of the probe fields via resonant
four-wave mixing. We have repeated our analysis for this
scheme. As shown by Hafezi et al. [38], this scheme affords
a higher maximal finesse F ∝ d, but our optimization
yields an overall scaling of 1=ϵ slower than

ffiffiffi
d

p
when

accounting for the reduced transmission T < 1, as also
reported in Ref. [45].
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FIG. 5. Scaling of performance with optical depth. Green:
numerical maximization of the induced cavity finesse (dots)
compared to the analytic result F ≈ 1.3

ffiffiffi
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p
(line). Red: numerical

minimization of the loss for a phase gate with 2dB ¼ 4π (dots)
and a power-law fit (line). For example, for d ¼ 104, the
optimization finds ϵ ¼ 0.08 at x ¼ 6.0 × 10−4, y ¼ 5.2 × 10−4.
The dashed lines in Figs. 4(b) and 4(c) are plotted for y ¼
5.2 × 10−4 and scanning x. Without the induced grating, the loss
is very high (ϵ ≈ 1; horizontal orange line). See Ref. [59] for more
details on the optimized parameters.
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Conclusions.—We showed that optical modulation of a
finite medium can form an effective cavity that strengthens
photon-photon interactions basedonRydbergblockade. The
inadequacy of a symmetric (two-port) cavity for a condi-
tional π-phase operation is solved with a Sagnac interfer-
ometer. We benchmark the induced cavity by calculating the
phase-loss relation in a Rydberg-based phase gate. This
relation is described approximately by a circle, whose radius
scales linearly with dBF . For the specific atomic system we
consider, the finesse of the induced cavity scales roughly as
F ∝ d0.4 (when optimized together with the overall trans-
mission), and thus so is the effective enhancement of dB. By
thiswe establish that the optical depth of themediumoutside
the blockade volume is a complementary resource to the
limited dB. The essential ingredient of the scheme is the
coupling between the counterpropagating modes. This
coupling delays an incoming probe pulse via so-called
“structural” slow light, as opposed to the standard delay
due to EIT, pertaining to “material” slow light [62]. While
the latter maintains the amplitude of the incoming probe
field, the former increases it in the medium.
Optically induced band gaps were demonstrated exper-

imentally using several atomic level schemes [60,63,64].
The proposed induced cavities are realizable with the
optical depths of 103 − 105 obtained with either cold
[65,66] or hot [67] atoms. As a general concept, induced
cavities could be employed in other systems, where actual
cavities are impractical or for switchable functionality of
photonic devices.
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