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We consider conformal field theories around points of large twist degeneracy. Examples of this are
theories with weakly broken higher spin symmetry and perturbations around generalized free fields. At the
degenerate point we introduce twist conformal blocks. These are eigenfunctions of certain quartic operators
and encode the contribution, to a given four-point correlator, of the whole tower of intermediate operators
with a given twist. As we perturb around the degenerate point, the twist degeneracy is lifted. In many
situations this breaking is controlled by inverse powers of the spin. In such cases the twist conformal blocks
can be decomposed into a sequence of functions which we systematically construct. Decomposing the four-
point correlator in this basis turns crossing symmetry into an algebraic problem. Our method can be applied
to a wide spectrum of conformal field theories in any number of dimensions and at any order in the breaking
parameter. As an example, we compute the spectrum of various theories around generalized free fields.
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Introduction and summary.—A conformal field theory
(CFT) is characterized by a set of local primary operators
OΔ;lðxÞ labeled by their scaling dimension Δ and Lorentz
spin l. These operators satisfy an algebra, the operator
product expansion (OPE), whose structure constants are
denoted OPE coefficients. The spectrum of scaling dimen-
sions and OPE coefficients constitute the CFT data.
Many analytic results for the CFT data can be obtained in

regimes with small parameters. These computations are in
essence perturbative. The conformal bootstrap [1,2] consists
in using instead associativity of the operator algebra to
constraint the CFT data. In higher dimensions this was first
implemented in [3], leading to extensive numerical results for
vast families of CFTs. This also motivated the search for
analytic methods using the same idea. A set of results along
these lines involves the large spin sector, first studied in [4]
and then systematically from the bootstrap perspective in
[5,6] for generic CFTand [7,8] for weakly coupled CFT [9].
A remarkable conclusion is that the large spin sector of CFTs
is universal and essentially free. Other analytic results from
the bootstrap perspective involve expansions around small
parameters, including large-N gauge theories [14] and the ϵ
expansion [15].
Our aim is to connect these developments. We consider a

CFT around a point of large, actually infinite, twist degen-
eracy: at the degenerate point we assume the spin for each
twist is unbounded. We then introduce twist conformal

blocksHð0Þ
τ ðu; vÞ inwhich four-point correlators decompose

Gð0Þðu; vÞ ¼
X
τ

Hð0Þ
τ ðu; vÞ: ð1Þ

As we move from the degenerate point, operators acquire
anomalous dimensions and the twist degeneracy is lifted.We

then introduce a sequence of functionsHðmÞ
τ ðu; vÞ, wherem

measures the departure from the degenerate value such
that [16]

Gðu; vÞ ¼
X
τ;m

HðmÞ
τ ðu; vÞ: ð2Þ

Agreat advantage of this decomposition is that the functions

HðmÞ
τ ðu; vÞ have well understood behavior around u; v ∼ 0.

This makes the crossing equations algebraic. Our method
can be applied to vast families of CFTs: theorieswithweakly
broken higher spin (HS) symmetry, large-N theories, etc. As
an example, we compute the spectrum of various theories
around generalized free fields (GFF).
Degenerate point.—Consider the four-point correlator of

identical scalar operators in a CFT in d-dimensional
Minkowski space

hϕðx1Þϕðx2Þϕðx3Þϕðx4Þi ¼
Gðu; vÞ
x
2Δϕ

12 x
2Δϕ

34

ð3Þ

with u ¼ ðx212x234=x213x224Þ, v ¼ ðx214x223=x213x224Þ. Crossing
symmetry implies

vΔϕGðu; vÞ ¼ uΔϕGðv; uÞ: ð4Þ
The correlator can be decomposed in conformal blocks

Gðu; vÞ ¼ 1þ
X
Δ;l

aΔ;lu
τ
2gτ;lðu; vÞ ð5Þ

with τ ¼ Δ − l the twist. This notation makes manifest the
small u behavior of conformal blocks. Assume the CFT has
a small parameter g, such that at g ¼ 0 the spectrum of
twists is highly degenerate. Namely for each twist τ there is
an infinite tower of operators of unbounded spin l.
Consider the functions
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X
l

að0Þτ;lu
τ=2gτ;lðu; vÞ ¼ Hð0Þ

τ ðu; vÞ ð6Þ

with að0Þτ;l the squared OPE coefficients at g ¼ 0. Hð0Þ
τ ðu; vÞ

encodes the contribution from a given twist to the correlator
at g ¼ 0. Hence

Gð0Þðu; vÞ ¼
X
τ

Hð0Þ
τ ðu; vÞ: ð7Þ

We call these functions twist conformal blocks (TCB).
Twist conformal blocks. Let us understand the proper-

ties of TCB. The small u behavior of conformal blocks
implies

Hð0Þ
τ ðu; vÞ ∼ uτ=2 at small u: ð8Þ

The small v limit of TCB is more subtle, since the sum over
the spin can enhance the divergence of a single conformal
block. The behavior can be determined following [4–7].
The scaling relevant for GFF is

Hð0Þ
τ ðu; vÞ ∼ 1

vΔϕ
at small v: ð9Þ

As we will briefly comment later, a more general behavior
is also possible.
Conformal blocks are eigenfunctions of Casimir oper-

ators [17,18]

D2 ¼ Dþ D̄þ ðd − 2Þ zz̄
z − z̄

½ð1 − zÞ∂ − ð1 − z̄Þ∂̄�; ð10Þ

D4 ¼
�

zz̄
z − z̄

�
d−2

ðD − D̄Þ
�

zz̄
z − z̄

�
2−d

ðD − D̄Þ; ð11Þ

where u ¼ zz̄; v ¼ ð1 − zÞð1 − z̄Þ and D ¼ ð1 − zÞz2∂2−
z2∂, with eigenvalues

λ2 ¼
1

2
½lðlþ d − 2Þ þ ðτ þ lÞðτ þ l − dÞ�; ð12Þ

λ4 ¼ lðlþ d − 2Þðτ þ l − 1Þðτ þ l − dþ 1Þ: ð13Þ
This allows us to construct a quartic eigenoperator of TCB:

HτH
ð0Þ
τ ðu; vÞ ¼ λHð0Þ

τ ðu; vÞ ð14Þ
with eigenvalue

λ ¼ 1

4
τðτ − dÞðτ − dþ 2Þðτ − 2dþ 2Þ; ð15Þ

given by a combination of the Casimir operators such that
the spin dependence disappears:

Hτ¼D4−D2
2þðd2−dð2τþ3Þþτ2þ2τþ2ÞD2: ð16Þ

In obtaining these properties little information was needed
about the explicit form of conformal blocks, or OPE
coefficients at g ¼ 0. The eigenvalue equation (14), together
with the behavior at small u, v and some information about

the theory at g ¼ 0 suffices to fix the TCB. Let us see this in
detail. Around v ¼ 0 we expect

Hð0Þ
τ ðu; vÞ ¼ 1

vΔϕ
½hð0Þτ ðuÞ þ hð1Þτ ðuÞvþ � � ��: ð17Þ

Plugging this into (14) we obtain a sequence of second order

differential equations for the functions hðiÞτ ðuÞ. The equation
for hð0Þτ ðuÞ has two independent solutions. Imposing the
correct behavior at small u we obtain

hð0Þτ ðuÞ ¼ c0ð1 − uÞ1−d
2
þΔϕu

τ
2F2þτ−d

2
ðuÞ ð18Þ

where FβðuÞ ¼ 2F1ðβ; β; 2β; uÞ is the standard hypergeo-
metric function. Plugging this into the next equation we

obtain a second-order equation for hð1Þτ ðuÞ. The correct small
u behavior leave us with another arbitrary coefficient, c1,
and so on. The situation is particularly simple in d ¼ 2. The
eigenvalue equation can be solved to all orders and the
solution takes the factorized form

Hð0Þ
τ ðz; z̄Þ ¼ H̄ð0Þ

τ ðz̄Þzτ
2Fτ

2
ðzÞ ð19Þ

where H̄ð0Þ
τ ðz̄Þ ∼ ð1 − z̄Þ−Δϕ for z̄ ∼ 1. To understand how to

fix Hð0Þ
τ ðz; z̄Þ completely, let us look at a specific example.

Consider GFF [14]:

Gð0Þðu; vÞ ¼ 1þ uΔϕ þ
�
u
v

�
Δϕ

: ð20Þ

The intermediate operators are double-trace operators
ϕ□n∂μ1 � � � ∂μlϕ with twist

τn ¼ 2Δϕ þ 2n: ð21Þ
The OPE coefficients can be found in [14]. Their explicit
form will not be used here. Let us now consider the
decomposition in TCB

Gð0Þðu; vÞ ¼
X∞
n¼0

Hð0Þ
τn ðu; vÞ: ð22Þ

The functions Hð0Þ
τn ðu; vÞ can be fixed as follows. Consider

them in a small u, v expansion

Hð0Þ
τn ðu; vÞ ¼

uΔϕþnðcð0Þn þ � � �Þ
vΔϕ

þ uΔϕþnðcð1Þn þ � � �Þ
vΔϕ−1

þ � � � :

As discussed above, the eigenvalue equation fixes all the

coefficients in terms of the leading ones cð0Þn ; cð1Þn ; � � �.
Focus on the leading term Hτ0ðu; vÞ. The explicit diver-
gence of Gð0Þðu; vÞ as z̄ → 1 leads to

cð0Þ0 ¼ 1; cð1Þ0 ¼ cð2Þ0 ¼ � � � ¼ 0: ð23Þ
Fixing completely Hτ0ðu; vÞ. This function contains sub-

leading terms in u. Cancelling them fixes all cðiÞ1 , and so on.
In carrying out this procedure it is convenient to think ofΔϕ
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as arbitrarily large, and then analytically continue in it. In
d ¼ 2we find the following closed expression for the TCB:

Hð0Þ
τ ðu; vÞ ¼ cτ

�
z̄

1 − z̄

�
Δϕ

zτ=2Fτ=2ðzÞ ð24Þ

for τ ¼ 2Δϕ þ 2n and

cτ ¼
ffiffiffi
π

p
22−τΓðτ

2
ÞΓðΔϕ þ τ

2
− 1Þ

ΓðΔϕÞ2Γðτ−12 ÞΓðτ
2
þ 1 − ΔϕÞ

ð25Þ

Equation (24) contains all terms around z ¼ 0; z̄ ¼ 1 for
large enough Δϕ. The full expression for the TCB is
actually the sum of two terms (one of which is not divergent
as v → 0) and can be recovered by imposing the symmetry
u → u=v; v → 1=v which corresponds to the exchange of
operators at x1, x2. At any rate, for our purposes it will
suffice to focus on the divergent part of the TCBs.
Breaking the twist degeneracy.—As we turn on g the

spectrum and OPE coefficients acquire a small correction.
To deal with this problem we introduce a shifted Casimir C:

Cτ ¼ D2 þ
1

4
τð2d − τ − 2Þ: ð26Þ

Conformal blocks are eigenfunctions of this operator, with
the conformal spin

J2τ;l ¼ 1

4
ð2lþ τÞð2lþ τ − 2Þ ð27Þ

as eigenvalue. We will assume corrections to the spectrum
admit the following expansion around large spin l

τl ¼ τ þ 2g
X
ρ

Bτ;ρ

ðJ2τ;lÞρ
: ð28Þ

In this Letter we will be interested in corrections to the
spectrum. OPE coefficients can be treated in a similar way.
The precise range of ρ will be dictated by crossing and will
be fixed later.
The crossing condition becomes algebraic after defining

X
l

að0Þτ;l
uτ=2

ðJ2τ;lÞm
gτ;lðu; vÞ ¼ HðmÞ

τ ðu; vÞ: ð29Þ

Hð0Þ
τ ðu; vÞ coincides with the TCB introduced above, while

m “measures” the departure from the degenerate point. The

functions HðmÞ
τ ðu; vÞ satisfy the recursion relations

CHðmþ1Þ
τ ðu; vÞ ¼ HðmÞ

τ ðu; vÞ; m ¼ 0; 1;…: ð30Þ
Namely, the operator C moves us along the sequence of

functions HðmÞ
τ ðu; vÞ. Furthermore, we have the following

behavior for small u, v:

HðmÞ
τ ðu; vÞ ∼ u

τ
2; HðmÞ

τ ðu; vÞ ∼ 1

vΔϕ−m
: ð31Þ

For Δϕ −m an integer, a log2 v behavior can also arise. As
we turn on the coupling, the four-point function becomes

Gðu; vÞ ¼ Gð0Þðu; vÞ þ gGð1Þðu; vÞ þ � � � ð32Þ
with

Gð1Þðu; vÞ ¼
X
τ;ρ

Bτ;ρH
ðρÞ
τ ðu; vÞ log uþ � � � : ð33Þ

τ runs over the twist spectrumat g ¼ 0while ρ turns out to run
over the twist spectrum plus integers. To compute corrections
to the spectrum only the piece proportional to logu in a small
u expansion will be relevant. Now we make the following

powerful observation. The functions HðρÞ
τ ðu; vÞ have a well

understood or computable expansion around u, v ¼ 0.
The form of this expansion is such that crossing symmetry
can be solved order by order, becoming an algebraic problem.
Let us analyze some examples in detail.
Example. Consider GFF in d ¼ 2. For large enough

Δϕ and to all orders in ð1 − z̄Þ the 2D TCB are

Hð0Þ
τ ðu; vÞ ¼ cτ

�
z̄

1 − z̄

�
Δϕ

zτ=2Fτ
2
ðzÞ: ð34Þ

Plugging this into (30) results in a factorized form also for

HðmÞ
τ ðu; vÞ:

HðmÞ
τ ðu; vÞ ¼ cτH̄

ðmÞ
τ ðz̄Þzτ=2Fτ

2
ðzÞ ð35Þ

with

D̄H̄ðmþ1Þ
τ ðz̄Þ¼ H̄ðmÞ

τ ðz̄Þ; Hð0Þ
τ ðz̄Þ¼

�
z̄

1− z̄

�
Δϕ

: ð36Þ

Together with H̄ðmÞ
τ ðz̄Þ ∼ ð1 − z̄Þ−ðΔϕ−mÞ this allows us to

find H̄ðmÞ
τ ðz̄Þ as an expansion in ð1 − z̄Þ. For the first few

cases this expansion can be resummed. Note that in (36) the
dependence on the twist τ has completely dropped out. As a

result, the functions HðmÞ
τ ðz; z̄Þ in 2D have the following

factorized form:

HðmÞ
τ ðz; z̄Þ ¼ cτH̄ðmÞðz̄Þzτ=2Fτ

2
ðzÞ ð37Þ

Integer Δϕ. A nice structure arises for integer but not
necessarily large Δϕ. As before, the divergent part of the
TCB is captured by

Hð0Þ
τ ðz; z̄Þ ¼ cτ

�
z̄

1 − z̄

�
Δϕ

zτ=2Fτ
2
ðzÞ ð38Þ

where τ ¼ 2Δϕ þ 2n. Let us construct explicitly the

functions HðmÞ
τ ðz; z̄Þ. In doing so we will keep only the

pieces with enhanced divergence, as z̄ → 1, with respect to
a single conformal block, or which become divergent upon
applying the Casimir C a finite number of times. Examples
are negative powers of ð1 − z̄Þ or ð1 − z̄Þp log2ð1 − z̄Þ for
any p. The factorized form of HðmÞ

τ ðz; z̄Þ in 2D allows us to
only deal with H̄ðmÞðz̄Þ. From (36), we can compute the
sequence of functions H̄ðmÞðz̄Þ for different values of Δϕ.
See Table I, the general structure is as follows. H̄ðmÞðz̄Þ
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contains power-law divergent terms for m ¼ 0;…;Δϕ − 1.
H̄ðmÞðz̄Þ contains log2ð1 − z̄Þ terms for m > 1, and for
m ≥ Δϕ it is of the form H̄ðmÞðz̄Þ ¼ gmðz̄Þlog2ð1 − z̄Þ with
gmðz̄Þ ∼ ð1 − z̄Þm−Δϕ .
What are the consequences of this for the spectrum of the

theory at order g? First assume we have only double-trace
operators in the OPE ϕ × ϕ. At order g

Gð1Þðz; z̄Þ ¼
X
τ;ρ

Bτ;ρH
ðρÞ
τ ðz; z̄Þ log zz̄þ � � � : ð39Þ

We write the crossing equation as

�
1−z
z

�
Δϕ

Gð1Þðz;z̄Þ¼
�

z̄
1− z̄

�
Δϕ

Gð1Þð1− z̄;1−zÞ; ð40Þ

where crossing takes z ↔ 1 − z̄. We now make the follow-
ing observation. Since all intermediate operators have
twist τ ¼ 2Δϕ þ 2n, all terms on the right-hand side behave
as ð1 − z̄Þ−Δϕð1 − z̄ÞΔϕþn as z̄ → 1. Hence the right-hand
side does not have power law divergences at z̄ ¼ 1. Given
the behavior of H̄ðmÞðz̄Þ around z̄ ¼ 1 we see that all
functions H̄ðmÞðz̄Þ with m ¼ 0; 1;…;Δϕ − 1 are forbidden.
Otherwise they would produce a divergence not present on
the right-hand side. Functions with higher m are also
forbidden, since they would lead to terms containing
log2ð1 − z̄Þ, also not present on the right-hand side at
one loop. We arrive at the following remarkable conclu-
sion: at first order in g only solutions with finite support in
the spin (or which decay faster than any power) are
allowed. A similar argument can be carried out also in
d ¼ 4, with the same conclusions. This justifies, for
instance, some of the claims made in [14].
Consider now a more interesting situation. Imagine ϕ

itself is present in the OPE ϕ × ϕ at order g. In this case
Gð1Þðz; z̄Þ contains the following piece:

Gð1Þðz; z̄Þ ⊃ aϕðzz̄ÞΔϕ=2gΔϕ;0ðz; z̄Þ ð41Þ
where aϕ is the (squared) OPE coefficient with which ϕ
appears. This term acts as a source in the crossing
equations. Now�
1 − z
z

�
ΔϕX

τ;ρ

Bτ;ρH
ðρÞ
τ ðz; z̄Þjdiv

¼ aϕz̄Δϕ

�
1 − z
1 − z̄

�
Δϕ=2

FΔϕ
2

ð1 − zÞFΔϕ
2

ð1 − z̄Þj
log z

: ð42Þ

The sum on the left-hand side of (42) has to reproduce the
divergence on the right-hand side. This implies the sum
over ρ starts at ρ ¼ Δϕ=2 and is such that the precise power
law divergence is reproduced for all values of z. Moreover
also terms containing log2ð1 − z̄Þ should be absent. To
extract the log z piece on the right-hand side use

FΔϕ
2

ð1 − zÞ ¼ −
ΓðΔϕÞ

Γ2ðΔϕ=2Þ 2
F1

�
Δϕ

2
;
Δϕ

2
; 1; z

�
log z ð43Þ

up to an holomorphic function at z ¼ 0. This leads to
X
τ;ρ

Bτ;ρcτHðρÞðz̄Þzτ=2Fτ=2ðzÞ

¼ −aϕ
ðzz̄ÞΔϕ

ðð1 − zÞð1 − z̄ÞÞΔϕ=2

ΓðΔϕÞ
Γ2ðΔϕ=2Þ

× FΔϕ=2ð1 − z̄Þ2F1

�
Δϕ

2
;
Δϕ

2
; 1; z

�
: ð44Þ

The crossing equation has become completely algebraic
as both sides can be expanded around z ¼ 0, z̄ ¼ 1. Let us
solve (44) in some examples.
Case Δϕ ¼ 2. In this case (44) becomes

X
τ;ρ

Bτ;ρcτH̄ðρÞðz̄Þzτ=2Fτ=2ðzÞ ¼ −
aϕz2

ð1 − zÞ2ð1 − z̄Þ : ð45Þ

The sum over twists runs over τ ¼ 4þ 2n. To reproduce
the divergence on the right-hand side the sum over ρ should
start at ρ ¼ 1. Not to produce log2ð1 − z̄Þ the sum over ρ
should stop also at ρ ¼ 1. Hence the expansion of the
anomalous dimensions in inverse powers of the conformal
spin has exactly one term. This result is valid to all orders in
inverse powers of the spin, for all values of the twist.
Setting ρ ¼ 1 we obtain

X
τ

Bτ;1cτzτ=2Fτ=2ðzÞ ¼ −
aϕz2

ð1 − zÞ2 ð46Þ

which implies

B2Δϕþ2n;1 ¼ −aϕ ð47Þ

leading to the following anomalous dimensions for
double-trace operators at first order in g and to all orders
in 1=l

γn;l ¼ −
2aϕ

ðlþ nþ 2Þðlþ nþ 1Þ : ð48Þ

This result is obtained in [19] by more standard methods.
Case Δϕ ¼ 4. This case is more interesting and, to our

knowledge, the results unknown. Equation (44) becomes

TABLE I. Sequence of TCBs for integer values of Δϕ.

Δϕ ¼ 2 Δϕ ¼ 3

H̄ð0Þðz̄Þ ¼ ½z̄=ð1 − z̄Þ�2 H̄ð0Þðz̄Þ ¼ ½z̄=ð1 − z̄Þ�3
H̄ð1Þðz̄Þ ¼ ½1=ð1 − z̄Þ� H̄ð1Þðz̄Þ ¼ ½ð4z̄ − 3Þ=ð4ð1 − z̄Þ2Þ�
H̄ð2Þðz̄Þ ¼ 1

2
log2ð1 − z̄Þ H̄ð2Þðz̄Þ ¼ ½1=ð4ð1 − z̄ÞÞ� − 1

4
log2ð1 − z̄Þ

PRL 119, 111601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 SEPTEMBER 2017

111601-4



X
τ;ρ

Bτ;ρcτH̄ðρÞðz̄Þ zτ=2Fτ=2ðzÞ

¼ −aϕ
6z4ð1þ zÞ
ð1 − zÞ5

�
1

ð1 − z̄Þ2 −
3

1 − z̄

�
: ð49Þ

The factorization into holomorphic and antiholomorphic
functions allows us to solve the problem in two steps. More
precisely Bτ;ρ factorizes into a function of τ times a function
of ρ. First focus in the ρ dependence. To reproduce the
correct divergence around z̄ ¼ 1 the sum over ρ should
include ρ ¼ 2 and ρ ¼ 3. This in turn will produce a term
proportional to log2ð1 − z̄Þ. In order to cancel this term we
must include ρ ≥ 4 with

1

ð1 − z̄Þ2 −
3

1 − z̄
¼

X
ρ¼2

αρH̄ðρÞðz̄Þ: ð50Þ

The coefficients αρ can be found recursively by applying D̄
repeatedly to both sides of the equation [20]. Note that to
carry out this procedure we do not need to know the explicit
form of the functions H̄ðρÞðz̄Þ. A similar procedure works in
higher dimensions. One finds

αρ ¼ 2ρ−2ð5 × 3ρ − 9Þ: ð51Þ
To fix the dependence on n we need to solve the following
problem:

X
τ¼2Δϕþ2n

Bτ;ρcτzτ=2Fτ=2ðzÞ ¼ −aϕ
6z4ð1þ zÞ
ð1 − zÞ5 ; ð52Þ

solved by

B2Δϕþ2n;ρ ¼ −
3aϕ
4

ðn2 þ 7nþ 8Þ; ð53Þ

which leads to

γn;l ¼ −54aϕðn2 þ 7nþ 8Þ J2 − 1

J2ðJ2 − 2ÞðJ2 − 6Þ ; ð54Þ

where J2 ¼ ðlþ 4þ nÞðlþ 3þ nÞ. This prediction is
valid to all orders in 1=l.
Outlook.—We have proposed a newmethod to study CFT

around points of large twist degeneracy. This method
transforms the crossing equations into an algebraic problem
and allows us to solve the theory perturbatively around large
spin. The method does not rely on a Lagrangian description
and has a wide range of applicability. As an example we
computed the anomalous dimensions for scalar models
around GFF in 2D. For Δϕ ¼ 2 our method offers a simple
explanation of why the expansions in inverse powers of the
conformal spin truncate after a single term at order g.
Although we have shown how this works in d ¼ 2, this
result generalizes to higher dimensions and indeed this
truncation also holds for the OðNÞ model in d ¼ 4 − ϵ; see
e.g. [21,22]. Our method explains the reason.

We have got some milage by assuming (9). This
assumption was motivated by GFF but is not always true.
For other cases the correct behavior can be inferred once we
select a specific CFT. Then it is straightforward to apply the
machinery developed here.
Although features of the method have been shown in

simple examples, the range of applicability is much wider.
In general g can be any small parameter: a coupling or 1=N
or ϵ. Some possible applications are the following:
CFT in various dimensions. We have shown how to

systematically construct (as series expansions) the func-
tions Hm

τ ðu; vÞ in any number of dimensions. Furthermore,
the behavior around u; v ∼ 0 is universal and defined by the
theory at g ¼ 0, so that the method can be readily applied to
CFT in general dimensions.
Higher orders in g. At higher orders the correlator

will contain terms proportional to log2 v; � � �, which can be
computed from the CFT data at previous orders.
Reproducing these divergences will again fix the CFT data
as an expansion in 1=l. This is used in [19] to compute 1=N4

corrections to anomalous dimensions in largeN CFTs. Even
in the nonperturbative regime, the method proposed
here generalizes [13] to arbitrary twist (γn;l as opposed
to γ0;l).
Weakly coupled conformal gauge theories. These con-

tain single-trace operators whose anomalous dimension
grows logarithmically with the spin. Logarithmic insertions
in our setup can be studied by inserting 1=J2m, analytically
continuing in m and then taking derivatives with respect to
this parameter. Again we will obtain algebraic equations.
The approach of this Letter offers a gauge invariant on-shell
method to study weakly coupled gauge theories.
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