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We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core
interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging
from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-
autocorrelation function we are able to calculate the linear response transport coefficients, such as the
diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an
inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact
analytical results are corroborated by Monte Carlo simulations.

DOI: 10.1103/PhysRevLett.119.110603

Introduction.—Understanding out-of-equilibrium phe-
nomena has been at the forefront of condensed matter
physics of the last decade. Despite the efforts, we have only
recently gained a considerable insight into the microscopic
origins of the transport in interacting systems in terms of an
emerging field of generalized hydrodynamics (GHD)
[1–11]. While GHD provides a general framework to
analytically deal with the ballistic transport, in particular,
in integrable systems, it lacks an extension which would
enable us to study normal, diffusive transport. In this
regard, there are only a few results on lower bounding
the diffusion constant [12,13].
Since the integrable systems are characterized by bal-

listically propagating excitations [14], the question of how
the diffusion, which is usually related to microscopic chaos,
arises in integrable, locally interacting, clean and deter-
ministic (i.e., nondisordered and nondissipative) systems is
puzzling to say the least [15–20]. A great deal of attention
has been devoted to the study of inhomogeneous quench
problems, where two chains in equilibrium with distinct
temperatures or chemical potentials are joined together and
then let to evolve under a homogeneous Hamiltonian
[1–9,21]. In such situations, nonequilibrium steady states
typically emerge on ballistic lines x ¼ vt. However, for
systems exhibiting paritylike symmetries, with respect to
which the initial quench state is symmetric and the current
antisymmetric, the ballistic transport channel may close
and time-dependent density matrix renormalization group
simulations clearly indicate that the steady state arises
along the diffusive lines x ¼ ξ

ffiffi
t

p
[15].

In this Letter we expound one possible general mecha-
nism for diffusive behavior in interacting systems, which as
we show on an example, is connected to the interplay
between freely propagating neutral degrees of freedom and
insulating behavior of charge carrying ones. The model in
question is a simple, reversible cellular automaton, consist-
ing of three types of particles: freely moving vacancies, and
hard-core interacting positive and negative charges. Similar

automata provide caricatures of mechanical laws of motion
and were studied in the context of integrability [22–25].
Despite the integrability, obtaining the full time dependence
is usually intractable, rendering the calculation of transport
coefficients inaccessible. In our model, however, we explic-
itly compute the time dependence of current time autocor-
relation functions in separable equilibrium states, and solve
the inhomogeneous quench problem with arbitrary initial
charge density bias resulting in a universal diffusive error
function scaling profile. Depending on the density of
vacancies and the imbalance of positive and negative charge
three different regimes are identified. The absence of
vacancies renders the system insulating, while in a generic
case of the charge imbalance the system exhibits ideal
transport. In the regimewith a finite density of vacancies and
without the charge imbalance, including the maximum
entropy state, the model exhibits purely diffusive transport.
The model.—Consider a deterministic, reversible cellular

automaton defined on the chainwith an even length of n sites.
Each site can be either vacant (state ∅), or occupied by a
positively or negatively charged particle (state þ or −). The
dynamics of the lattice configuration, s ¼ ðs1;…; snÞ;
sx ∈ f∅;þ;−g, can be expressed in terms of a local two
site mappingϕx;xþ1ðsÞ ¼ ðs1; s2;…; s0x; s0xþ1;…; snÞ, where
the updated elements ðs0x; s0xþ1Þ are obtained from the initial
ones ðsx; sxþ1Þ, by a self-inverse transformation

ð∅;∅Þ↔ ð∅;∅Þ; ð∅;αÞ↔ ðα;∅Þ; ðα;βÞ↔ ðα;βÞ; ð1Þ

with α; β ∈ fþ;−g. The local process describes the elastic
scattering of charged particles. The lattice configuration at
time t, st ¼ ϕðst−1Þ, can be expressed in terms of a two step
propagator ϕ ¼ ϕo∘ϕe given by sequences of disjoint local
mappings [Relation (1)] ϕo ¼ ϕ1;2 ∘… ∘ ϕn−1;n, ϕe ¼
ϕ2;3 ∘… ∘ ϕn;1, intertwining odd-even and even-odd sites,
respectively. The dynamics of charges is induced by freely
propagating vacancies, while the clustered particles remain
frozen in time as illustrated in Fig. 1. The cellular automaton
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admits a mechanical analogy in terms of a two-species,
synchronous hard-point gas if particles at occupied sites x are
attributed velocities 2ð−1Þx or −2ð−1Þx, at odd or even
steps, corresponding, respectively, to integer or half-integer
times [26].
We are interested in the dynamics of the charge qtx ¼

stx þ stxþ1 corresponding to sites x and xþ 1 at time t, with
stx ¼ �1, if the site x is occupied by the positive or negative
charge, and stx ¼ 0 otherwise. The total charge Qt ¼ P

xq
t
x,

is a constant ofmotion. The corresponding currentJt ¼ P
xj

t
x

can be defined on the intermediate time steps (see Fig. 2) as

jtþ1=2
x ¼ 2ð−1Þxðstþ1=2

x − stþ1=2
xþ1 Þðstþ1=2

x þ stþ1=2
xþ1 Þ2; ð2Þ

where jx denotes the local density. The omitted superscript
corresponds to time t ¼ 0. One can check that the continuity
equation holds:

qtþ1
x − qtx þ

1

2
ðjtþ1=2

xþ1 − jtþ1=2
x−1 Þ ¼ 0: ð3Þ

To carry out the calculations we introduce a multiplica-
tive algebra A of observables—functions over the con-
figuration space with a local basis

½α�xðsÞ ¼ δαx;sx ; α ∈ f∅;þ;−g; ð4Þ
½α1α2…αr�x ¼ ½α1�x½α2�xþ1 � � � ½αr�xþr−1: ð5Þ

The position xwill be dropped when clear from the context.
The dynamics of observables atðsÞ≡UtaðsÞ ¼ a(ϕtðsÞ)
is given by a 3n × 3n matrix U [32] factorized as

U¼UoUe; Uo¼
Yn=2
x¼1

U2x−1;2x; Ue¼
Yn=2
x¼1

U2x;2xþ1: ð6Þ

Note that the local propagator obeys Yang-Baxter equation
Ux;yUy;zUx;y ¼ Uy;zUx;yUy;z. We define the unnormalized
maximum entropy state hai ¼ P

saðsÞ in terms of which
an expectation value in any probability distribution (state) p
can be expressed as haip ¼ hapi. We introduce an alter-
native local basis and its dual

½0� ¼ ½∅� þ ½þ� þ ½−�; ½0�0 ¼ ð1 − ρÞ½∅� þ ρ

2
ð½þ� þ ½−�Þ;

½1� ¼ ½þ� − ½−�; ½1�0 ¼ 1

2
ð½þ� − ½−�Þ;

½2� ¼ 1

1 − ρ
½∅� − ½0�; ½2�0 ¼ 1 − ρ

2
ð2½∅� − ½þ� − ½−�Þ;

ð7Þ

h½α�½β�0i ¼ δα;β, α; β ∈ f0; 1; 2g. This basis has the follow-
ing properties: ½0�≡ 1 (identity in A), ½1� corresponds to
the imbalance of charge, and h½2�ip ¼ 0 for the class of
probability distributions p introduced below, with the
particle density ρ. These properties enable us to study
the dynamics on the reduced space. The local charge and
current now read

qx ¼ ½10�x þ ½01�x; ð8Þ

jx ¼ 2ð1 − ρÞð−1Þxð½10�x − ½01�x þ ½12�x − ½21�xÞ: ð9Þ

Linear response.—According to Einstein’s relation
the diffusion coefficient D is connected to Green-Kubo
conductivity (Sec. A of the Supplemental Material [33])

σ ¼ 1

2
Cð0Þ þ

X∞
t¼1

CðtÞ; ð10Þ

as σ ¼ χD, χ being the static susceptibility (the second
moment of charge Q). CðtÞ ¼ limn→∞ð1=nÞhJUtJip is the
current correlation function, with p being an equilibrium
state, Up ¼ p, and n the system size. Another important
transport coefficient, corresponding to the rate at which the
conductivity diverges [34], is the Drudeweight,D ¼ Cð∞Þ.
In case of nonvanishingDrudeweight, the diffusion constant
can be regularized by subtracting the ballistic contribution
from the correlator CðtÞ → CðtÞ − Cð∞Þ [1,35].

FIG. 1. Time evolution of a random maximum entropy con-
figuration (ρ ¼ 2=3, μ ¼ 0) for 200 sites. Particles þ, −, and
vacancies ∅ are in blue, green, and white, respectively.

FIG. 2. Scheme of the model: Gray disks denote the sites to
which the particles or vacancies (stx) are assigned, and green
boxes where the particles scatter carry the local current. The
particles can be imagined to move along green lines. Pairs
ðx − 1; xÞ, ðxþ 1; xþ 2Þ;…, are updated between time slices t
and tþ 1

2
, while the shifted pairs are updated in the following

half-time step.
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We restrict the discussion to translationally invariant
product equilibrium states p ¼ pðρ; μÞ ¼ Q

n
x¼1 px,

px ¼ ½0�0x þ μ½1�0x; 0 ≤ ρ ≤ 1; −ρ ≤ μ ≤ ρ: ð11Þ
Note that ½0�0x depends on ρ. The density ρ represents the
probability of a lattice site being occupied by a charged
particle, while the chemical potential μ corresponds to the
charge imbalance. The static susceptibility in such a state
is χ ¼ 4ðρ − μ2Þ.
Diffusive regime.—Initially we consider a balanced

equilibrium state with μ ¼ 0 and arbitrary ρ for which
the following orthogonality relations hold,

h½0�½1�ip ¼ h½0�½2�ip ¼ h½1�½2�ip ¼ 0: ð12Þ
As a consequence only the observables with a single
occurrence of [1] and at most one [2] in the propagated
current Jt can contribute to the expectation value (10).
The local observables that are relevant for the calculation
of the diffusion constant are y0 ¼

P
xð½10�2x − ½01�2xÞ,

y1 ¼
P

xð½12�2x− ½21�2xÞ, and y2 ¼
P

xð½012�2x − ½021�2xÞ,
in terms of which the current reads J ¼ 2ð1 − ρÞ×
ð−2y0 − y1 þ y2Þ. In addition, we note that the two steps
of the propagator are conjugated Uo ¼ S−1UeS by a lattice
shift, defined as S½α�x ¼ ½α�xþ1. Since yα are translationally
invariant, i.e., S2yα ¼ yα, the complete propagator on the
relevant subspace reads U ¼ ðSUeÞ2. Under the half-time
propagation SUe the observables y0 and y1 map into linear
combinations of y0 and y2. Because of the ballistic
propagation of ½2�, U1;2½02� ¼ ½20�, U1;2½20� ¼ ½02�, any
additional basis operators appearing in yt2, t > 0, are
orthogonal to J, since there is always at least one
occurrence of [0] between [1] and [2]. Therefore, in order
to compute CðtÞ, we only have to consider the time
evolution restricted to the subspace spanned by fyαg.
Half-time step propagator SUe projected to this basis reads
(see sec. B of the Supplemental Material [33] for details)

U ¼

2
64

1 − 2ρ 2ρ 0

0 0 0

−2ð1 − ρÞ 1 − 2ρ 0

3
75; ð13Þ

and yields the following simple expression for the current-
autocorrelation function

CðtÞ ¼ 4ρð1 − ρÞ½2ð1 − ρÞ; ρ; − p�U2t

2
64

2

1

−1

3
75

¼
�
8ρð2 − ρÞð1 − ρÞ; t ¼ 0;

16ρð1 − ρÞ4ð1 − 2ρÞ2t−2; t ≥ 1:
ð14Þ

The row vector contains properly normalized overlaps
hyαJip, while the column vector is proportional to the
current J expressed in the basis fyαg. One can then easily
calculate the conductivity and the diffusion constant

σ ¼ 4ð1 − ρÞ; D ¼ ρ−1 − 1; ð15Þ

which agree with Monte Carlo simulations (see Fig. 3).
Ballistic regime.—By introducing the charge imbalance

μ ≠ 0, the local observables cease to be orthogonal,
h½2�½1�ipðρ;μÞ ≠ 0. However, we may still consider only a
subspace of observables, with at most one occurrence of [2]
and a single [1]. In this case the relevant subspace is
spanned by fy0; y1; z02d; z12dþ1; d ≥ 0g, with the observables
zkd defined as

zkd ¼
X
x

ð½00…0|{z}
k

10…0|{z}
d

12�2x − ½020…0|{z}
d

10…0|{z}
k

�2xÞ: ð16Þ

Performing a similar calculation as above we obtain the
following expression for the time autocorrelation function
(Sec. B of the Supplemental Material [33])

CðtÞ
8ρ̄

¼
� μ2 þ ρð2 − ρÞ; t ¼ 0;

2μ2

ρ þ 2ρ̄3ð1 − 2ρÞ2t−2ðρ − μ2

ρ Þ; t ≥ 1;
ð17Þ

with ρ̄ ¼ 1 − ρ, which immediately yields the exact expres-
sion for the Drude weight

D ¼ 16ðρ−1 − 1Þμ2; ð18Þ

again agreeing excellently with numerics (Fig. 3). The
details regarding Monte Carlo simulations are presented in
Sec. D of the Supplemental Material [33].
Inhomogeneous quench.—Let us consider dynamics of

charges starting from the product initial state p with
uniform density ρ and two distinct chemical potentials
μL, μR on the left and the right half of the chain, which can
be expressed locally as

FIG. 3. The comparison between the exact and numerically
estimated Drude weight ~D and conductivity σ. Drude weight is
rescaled as ~D ¼ D=ðρ−1 − 1Þ. Points with different colors cor-
respond to numerically calculated Drude weights at different
values of ρ and black points (inset) are numerically estimated
values of the conductivity (at μ ¼ 0). The black lines correspond
to exact values Eqs. (15) and (18).
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pn=2þx ¼ ½0�0 þ μx½1�0; ð19Þ

with μx ¼ μL for x ≤ 0 and μR for x > 0. We shall now
discuss the time evolution of the centered charge profile

fðx; tÞ ¼ hUtqn=2þ2x−1ip ¼ hqn=2þ2x−1iU−tp: ð20Þ

In particular, we are interested in the dynamics inside of the
light-cone jxj ≤ t with n ≥ 8tþ 2, so that the boundary
values of the profile are constant fð∓ t; tÞ ¼ 2μL;R.
Because of the conservation of the number of αj ¼ 1 in

the adjoint time evolution U−tp expressed in the dual basis
½α�0, the initial state p can be replaced by

~p ¼
Xn

2

x¼−n
2
þ1

μxex; ex ¼ ½0…0|{z}
n
2
þx−1

10…0|{z}
n
2
−x

�0: ð21Þ

Here we use the dual space version of the argument used in
the computation of correlation functions. After half of the
time step the time propagated charge density (21) consists
of the terms including a single occurrence of ½1�0 and
combinations of ½1�0 and ½2�0 on neighboring sites on the
background of ½0…0�0. Using the argument of the freely
propagating ½2�0, namely, U1;2½02�0 ¼ ½20�0, U1;2½20�0 ¼
½02�0, we can conclude that the terms containing ½2�0 can
be disregarded at all time steps due to the orthogonality to
charge densities qx. The complete time propagation on the
relevant subspace, spanned by fexg, is described by a cyclic
block three-diagonal matrix

U ¼

2
666664

. .
. . .

. . .
.

c a b

c a b

. .
. . .

. . .
.

3
777775; ð22Þ

where a, b, c are 2 × 2 blocks. The projected initial state
(21) reads p ¼ ⨁n

x¼1μx−n=2. Assuming that n ≥ 8tþ 2,
the charge profile (20) inside of the light cone no longer
depends on n. Thus, the limit n → ∞ can be applied
and an infinite matrix U can be diagonalized using
the block Fourier transform, yielding two bands of
eigenvalues λ1;2ðkÞ, k ∈ ½−π; π� and Bloch eigenvectors
ω1;2ðkÞ¼⨁x∈Zv1;2ðkÞeikx (see Sec. C of the Supplemental
Material [33] for details). Additionally, note that
hqxU−teyi ¼ 0, if jx − yj > 2t, so the charge density
profile can finally be expressed as a Fourier integral

fðx; tÞ ¼
Xxþt

y¼x−t
μ2y

Z
π

−π
dkeikðx−yÞ

X2
j¼1

λjðkÞt ~αjðkÞ; ð23Þ

where ~α1;2ðkÞ ¼ α1;2ðkÞ(½1; 1� · v1;2ðkÞ), and α1;2ðkÞ are the
coefficients expressing the vector [1, 1] in terms of Bloch

vectors v1;2ðkÞ (details in Sec. C of the Supplemental
Material [33]). We are interested in the behavior of fðx; tÞ
on the diffusive lines 2x ¼ ξ

ffiffi
t

p
in the large time limit

~fðξÞ ¼ limt→∞fðξ
ffiffi
t

p
=2; tÞ. In this limit, the contribution

from the term proportional to λ2ðkÞt can be disregarded,
since supkjλ2ðkÞj < 1. Additionally, one should note that
λ1ð0Þ ¼ 1, therefore the large t asymptotics of Eq. (23)
can be obtained by expanding λ1ðkÞ around k ¼ 0,
λ1ðkÞt ≃ e−γk

2t, γ ¼ ð1 − ρÞ=4ρ. Introducing a new variable
h ¼ k

ffiffi
t

p
the integral (23) can be calculated exactly in the

scaling limit x; t → ∞ with x=
ffiffi
t

p
fixed, yielding

~fðξÞ ¼ ðμR þ μLÞ þ ðμR − μLÞerf
�

ξ

4
ffiffiffi
γ

p
�
: ð24Þ

The agreement between the exact and numerical result can
be seen in Fig. 4. Since the solution of the diffusion equa-
tion ð∂=∂tÞfðx; tÞ ¼ Dð∂2=∂x2Þfðx; tÞ for a step initial
data reads fðx; tÞ ∼ erfðx= ffiffiffiffiffiffiffiffi

4Dt
p Þ, the diffusion constant

is D ¼ 4γ ¼ ρ−1 − 1.
Contrary to the linear response, the inhomogeneous

quench does not excite any ballistic transport for the
specific class of initial states considered [Eq. (19)] even
for μL þ μR ≠ 0. The reason is simple: inhomogeneous
quench does not excite any imbalance of vacancy momen-
tum, which is a conserved quantity. However, in the
perturbative linear-potential quench derivation of linear
response coefficients (Sec. A of the Supplemental Material
[33]) one has a natural vacancy momentum bias which
generates the Drude weight.
Discussion.—We have studied transport properties of a

simple reversible and deterministic cellular automaton.
Despite its simplicity the model exhibits a large variety
of transport phenomena, including charge diffusion, and
offers an analytical handle on the calculation of transport
coefficients, as well as exactly solving interesting initial
value problems. The algebraic structure of the model

FIG. 4. Charge profiles fðξ ffiffi
t

p
=2; tÞ after the inhomogeneous

quench. Curves with different colors correspond to different times
t. The profiles converge to the estimated asymptotic profiles
(dashed lines) given by Eq. (24). The parameters ðρ; μL; μRÞ are
ð1=2;−0.36; 0.16Þ and ð2=3;−0.4; 0.4Þ.
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enables the identification of microscopic mechanisms
behind its various transport regimes. Specifically, the
ballistic behavior of certain degrees of freedom can induce
the diffusive transport of charge carriers, which are com-
pletely frozen in their absence.
Our results open many interesting questions. First, it

should be clarified whether the many body deterministic
diffusion mechanism disclosed here applies to other inte-
grable models, in particular to quantum lattice models such
as XXZ, or to the quantized version of the hereby presented
model. A promising idea in this direction is a formulation
of quantum transport in terms of a classical-like soliton gas
[11]. Second, our exactly solvable model could serve as a
test bed for a precise verification of predictions of GHD.
And third, one may imagine various solvable generaliza-
tions of our model. For example, we can define a stochastic
Markov chain model by introducing a tunneling probability
Γ for a particle exchange, i.e., to modify the following
matrix elements of the local propagator Uð�;∓Þ;ð∓;�Þ ¼ Γ,
Uð�;∓Þ;ð�;∓Þ ¼ 1 − Γ≡ Γ̄. Our analysis can be straightfor-
wardly extended, resulting in the same value of the Drude
weight as for the deterministic case Γ ¼ 0, while the Green-
Kubo diffusion constant has a continuous dependence on Γ

D ¼ Γ2 þ Γ̄ð1 − Γ̄ρÞðΓðρ̄2 − Γρðρþ 1ÞÞ þ ρ̄Þ
Γ̄ρð1 − Γ̄ρÞ ð25Þ

and diverges at Γ ¼ 1. This implies that the physics of our
model is robust against adding a small noise or dissipation.
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No. N1-0025 of Slovenian Research Agency, and ERC
Grant OMNES.
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