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We consider heat transport via systems with broken time-reversal symmetry. We apply magnetic fields to
the one-dimensional charged particle systems with transverse motions. The standard momentum
conservation is not satisfied. To focus on this effect clearly, we introduce a solvable model. We exactly
demonstrate that the anomalous transport with a new exponent can appear. We numerically show the
violation of the standard relation between the power-law decay in the equilibrium correlation and the
diverging exponent of the thermal conductivity in the open system.
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Introduction.—It is generally believed that heat con-
duction in low-dimensional nonlinear systems is anoma-
lous from many theoretical [1-23] and experimental studies
[24-26]. In a one-dimensional system of N particles
connected at the ends to heat baths with a small temperature
difference AT, the thermal conductivity is defined as
k = JN/AT, where J is the steady state current per site.
The anomalous heat transport is given by the divergence of
k with increasing system size:

K~ N%, O<a<l. (1)
The anomalous behavior is related to the equilibrium
current correlation with slow decay in a closed system:

C(t) = N_1<Jtot<t)~]tot>e ~ t_ﬁ’

q 0<p<1, (2

where Jy, is the total energy current and (---),, is the
equilibrium average. A slow decay leads to the diverging
thermal conductivity through the Green-Kubo formula.

Generally, in nonlinear chains, there are several con-
served quantities in the periodic boundary condition, i.e.,
energy, momentum, and the so-called stretch variables
[15,16]. These conserved quantities are key ingredients
in understanding the anomalous behavior. Recently, there
has been significant progress in theories on the equilibrium
current correlation by considering the conserved quantities.
This remarkable progress included finding an exactly
solvable model with anomalous behavior, which is now
called the momentum exchange (ME) model [19,20]. This
model contains hybrid dynamics of deterministic dynamics
and stochastic “conservative” noise, which conserves the
three variables. Exact analysis of the current correlation
function shows f = 1/2 [19,20]. The ME model has
so far made fundamental contributions to explaining many
properties, such as the anomalous heat diffusion [21],
temperature profile [22], and steady state measure under
finite heat flow [23].
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Another area of progress is the nonlinear fluctuating
hydrodynamic theory (NFHT) applicable to general non-
linear chains [15-18]. The NFHT addresses the hydrody-
namical description for conserved quantities. The dynamics
of the conserved quantities are transformed into that of two
sound modes (left- and right-going sounds) and one heat
mode. The sound modes significantly affect the heat mode
and play a critical role in the anomalous behavior. Hence, it
is now recognized that the properties of sound waves are
crucial for the in-depth understanding of heat conduction.
One intriguing observation of the sound mode is its deep
connection to the Kadar-Parisi-Zhang dynamics [16,17].
Based on the mode-coupling analysis, the universality class
of the power-law decay exponent is classified into f = 2/3
or 1/2 [16,17].

In this Letter, we consider heat transfer via systems
with broken time-reversal symmetry. We apply magnetic
fields to one-dimensional charged systems with transverse
motions (such as polymer [12,27]). The Lorentz force
bends the directions of particle motions, and hence the
standard momentum conservation is not satisfied. In order
to focus on this effect, we consider the simplest situation
where strong magnetic fields are applied to weakly charged
particles such that the dynamics are dominated only by the
Lorentz force and spring forces connecting the particles.
The Hamiltonian is described by

N
H = Z pi — eiA(g:)?/2 + V(r:), (3)
i=1
where we set the masses to unity. The vector ¢; specifies the
position of the ith particle, r; is the stretch vector defined
below in Eq. (5), and V is the spring potential between the
nearest neighbor sites. The variables p; and A(g;) are,
respectively, the canonical momentum and the gauge
potential, and e; is the charge of the ith particle. The
actual velocity is given by v;=¢q; =p; — ¢;A(q;). We
consider the static magnetic field B, and then the dynamics
are given by the Lorentz force and spring forces
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v, =ev; xB— aq,-[v(ri—l) + V(ri)]’ (4)

From these dynamics, one finds that each summation of the
following local variables is conserved:

ri=4qiv1 — 4 (5)
e; = Wil*/2+ [V(r;) + V(ri)]/2, (6)
Pi=v;—eq;xB =p,—eA(q;) —eq; xB. (7)

where r; and ¢; are, respectively, the local stretch and
energy variables. The variable P; is a pseudomomentum
[28] which is not equivalent to the canonical momentum p;
[29]. Hence, the standard momentum conservation is
replaced by the conservation of this variable. From this
modification, the dynamics should be newly categorized in
the context of heat conduction and careful analysis on the
exponent f is required.

We note here that for nonlinear systems, it is generally
difficult to obtain accurate values of the exponent even in
large-scale numerical calculations. Hence, we introduce a
solvable model by extending the ME model to the case of
finite magnetic fields. Then, we clearly argue that the
magnetic fields can generate a new exponent.

Velocity exchange models.—An exactly solvable model
that we introduce is a harmonic chain with the potential
V(r;) = |r;|*/2, where the time evolution is composed of
the deterministic dynamics [Eq. (4)] and conservative
noises that conserve each summation of Egs. (5)-(7).
The change of variables from time ¢ to 7 + dt is given by

dria = (”H—la - Uia)dt7 (8)
dvi, = (rix = ric1y + €;Bv;y)dt

+ dnix(UH»lx - Uix) + dni—lx(vi—lx - Uix)v (9)
dviy = (riy — risiy — e;Bv;)dt

+ dniy(vi+1y - Uiy) + dni—ly(vi—]y - Uiy)’ (10)

where a = x, y. The magnetic field B is applied in the z
direction and we consider only motions of particles in the
xy plane, which are relevant to the magnetic field. The
vector v; = (v;y, v;) is the velocity vector of the ith particle
and r; = (r;. 1;) is the stretch vector defined in Eq. (5).
We consider the periodic boundary condition imposing
ri.y =r; and v, y =v; with an even number N (see
Fig. 1). The variable dn;, takes the value 0 or 1 with
the Poisson process satisfying the noise average
{dn;,» = ydt. Hence, the noises stochastically exchange
velocities between the nearest neighbor sites. One can
easily check that each summation of the variables
Egs. (5)—(7) is conserved. When we switch off the magnetic
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FIG. 1. Schematic picture of the periodic boundary condition.
The x components of variables are shown.

field, the dynamics for variables of x and y components
independently follow the original ME dynamics.

We consider two cases: case (I) with uniform charge
e; = 1 and case (I) with alternate charge e¢; = (—1)’. By
employing the deterministic dynamics only, one can derive
the dispersion relation for each case [30]

(k) =/ [2sin(k/2)1? + (B/2)? + B/2. (11)

o (k) = \/2 +B/2% /(2 4+ BY/2) - 2sink)%, (12)

where the subscripts I and II indicate the two cases and k is
the wave number. From these expressions, the sound
velocities are calculated using dw(k)/dk|;_,. Case (I)
has zero sound velocity while case (I) has a finite value
of the velocity. We numerically check this by considering
the space-time correlation of the local energy C..(i, 1) :=
(€i+1(1)0€1(0))eq Where ¢; is defined in Eq. (6) and
8¢ = € — (€)¢q- The symbol (---),, is the average over

the canonical ensemble [] j_ae_“/z'ﬂ”;"ﬂ)/ T /7 with temper-

ature 7 and the normalization Z. Here, the Boltzmann
constant is set to unity. In Fig. 2, we present numerical
results for the system size N = 512 with7 =1 and B = 1.
The figure clearly shows the absence of sound waves in
case (I), while case (II) has finite sound propagation

case (I) —t= 50
= —1t=100
= —t=150
] — =200

case (II) —t= 50
= —1t=100
= —t=150
o] =200

. A . AL A

—200 —100 0 100 200

7

FIG. 2. Numerical calculation of the space-time correlation
Ceeli, 1) = (€11 (1)€)¢q Tor the dynamics Eqs. (8)-(10). The
fifth-order Runge-Kutta algorithm with dt = 0.001 is used for
the deterministic dynamics, and 10° initial states were taken from
the canonical distribution. Parameters: B =1, N =512, T =1,
and y = 0.1. One can clearly see the absence of sound waves in
case (I), while case (I) has finite ballistic peaks.
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indicated by ballistic peaks. Thus, cases (I) and (II) have
contrasting differences in the dynamics, and hence, we
discuss heat conduction with broken time-reversal sym-
metry, comparing these cases.

Methods and main results of equilibrium correlation.—
For zero magnetic field, the exponent f = 1/2 is rigorously
proved in Refs. [19,20]. We now consider the case of
finite magnetic fields. The continuity equation with
respect to the local energy is expressed as ¢;(¢) —€;(0) =
—I,;[0,¢] 4+ 1;_{[0, 7], where I;[0, t] is the accumulation up to
time ¢ of the energy current measured between the i and
(i 4+ Dth sites:

1,04 _/O'ds[ff(s>+J;(s)]+/0’d1;.n(s), (13)

JHs) = =D ria($)[vis1a(s) + via(5)]/2, (14)

Ji(s) = - Z 7[0714(5) = 03, (5)]/2, (15)
dJy(s) = — Z [02,14(5)/2 = v2,(5)/2]dm;,(s),  (16)

where dm,;, is the Martingale noise defined as dm;, =
dn;, —ydt [31], J? and J* are the instantaneous currents
from the deterministic dynamics and average stochastic
noise, respectively. The third current dJ"” is a current from
the Martingale noise, whose contribution to the thermal
conductivity is constant and the correlations between dJ"”
and J vanish [19,20]. Since dJ" does not generate
power-law behavior in the current correlation, we consider
only the contribution of J¢ and J* as

|

T2

A+ 4y sin®(k/2)][A> + 8(Ay + 2) sin*(k/2)]

C<t) = N_1<<Jz)t(t)‘]z)t»eq = «Jg)l(t)‘]g»eqv (17)

where J&, = >, J¢ + J¢ and J¢ = (J4, + J{)/2. We used
>_iJi =0, and the symbol (- -- )., denotes the average
over the canonical ensemble as well as the average over
noises. We follow the technique developed in Refs. [19,20].
We consider the Laplace transform

() = / ® dre=C(1) = / ® di((e= D)0
0 0
= ([(A= 1) E)eq. (18)
where the operator L is the time evolution operator given by

L =Ly + ¢S, where L and S, respectively, correspond to
the deterministic dynamics and conservative noises:

0
Lo = Z(%’Ha - via)aT

i.a ra

0 0
+ Ze,»B (’l)[yaT— UixaT[.y)’ (19)

ix

0
+ (ria_ri—la)a—

ia

Sfrv) =3 2 Sy = flr.). (20)

Here, the function f is an arbitrary function of r and v and
plli+t1.4 is obtained from v by exchanging the variables v;,
and Vitla-

The details to derive the function C(1) are provided in
the Supplemental Material [30], and below we discuss
physically crucial results. The Laplace transforms in the
thermodynamic limit are given as follows:

() =— /0 7 dkcost(k/2)

T

TZ

[A + 4y sin?(k/2)][2* + 8(Ay + 2) sin?(k/2)] + B?A[A + 8y sin?(k/2)]’

(B> 4 p*)a, — 8B + 2[B*(2u — ya,) — yu*a;] cos k + as(4ucos® k + 8y cos’ k)

(21)

Cul(d) = — /0 7 dkcost(k/2) "

where the subscripts indicate two cases, and u = 1 + 2y,
a; =8—4y> +u®, a,=-a,+4 and a3 =4+ 4yt -
y*(8 + p?). The asymptotic real-time representation is
analyzed by the inverse Laplace transform, considering a
small wave number for finite B and y, and one gets

Cy(t) ~Ayt73/* + Ayt=1/2 cos(Bt) + Ast73/2, (23)
Cr(1) ~ Agt™'12, (24)

where A;,34 are constant values which depend on B.
We now list physically crucial observations for these

(B> + %) [(B? + u?)a; — 8B*] + 8[B**a, + u*(az — 2)] cos* k — 16y%azcos* k

(22)

[
exact results. In both cases, power-law behavior exists.
Equation (23) includes the power-law term with oscillation
in time which rapidly decays for finite B, and most
importantly the new exponent f§ = 3/4 appears. The new
power-law decay exponent exists only for case (I), while
case (II) has # = 1/2, which is the same exponent as for
B = 0. This implies that the universality class depends on
the charge structure of the system. These exact findings
are the main results in this Letter. A numerical evaluation of
these observations is presented in Fig. 3. Rapid decay
and power-law behavior are observed for all cases. The
numerical calculation accurately reproduces the known
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FIG. 3. Numerical check of the exponent f. Parameters:
N =2048, T=1, y=0.1, and B =1 for cases (I) and (II).
Numerical procedure is the same as in Fig. 1.

exponent § = 1/2 for the case of zero magnetic field. In
addition, one can clearly see that case (II) has the exponent
p = 1/2, and case (I) has f = 3/4 with oscillation in time.
In the inset, a time integral of the equilibrium correlation is
used to check the exponent.

Numerical results of the exponent a.—We next consider
the exponent « in Eq. (1) that is measured in the non-
equilibrium steady state when the system is connected to
thermal reservoirs. We use a numerical approach here. We
attach the Nose-Hoover thermostat to the end particles [32].
The dynamics for the sites from i = 2 to N — 1 remains the
same as Egs. (8)—(10), while the boundary sites obey the
following equations for velocities:

dvfu = [rfa —T¢-1a + efB(éa,xvfy - 5a,yvfx)]dt

+64.1dn1,(V2g = V14) + Oy ydNN_1,(VN_10 = VNa)

— EraVeadl, (25)
dirq =1 (v3,/ T, = 1)L, (26)
100 Fo© B=0
F o case (1)
& case (II)
10
g e : — X N1/2
L A
- — o N2 ]
= o NO-3750.001 1
a ---- oc N/3 1
10" 107 10° 10*

N

FIG.4. Numerical calculation of the system-size dependence of
the thermal conductivity. The fifth-order Runge-Kutta algorithm
with dt = 0.001 is used and the steady state was checked from
the uniformity of local energy current. Parameters: (7, Ty) =
(2,1), y=0.1, ¥ =1, and B =1 for cases (I) and (I). The
exponent « in case (I) is different from known exponents. The
error bar of the exponent for case (I) is estimated using Gnuplot
for the range N = [512,8192].

where £ =1 or N. T| and Ty are the reservoir’s temper-
atures at the first and the Nth particles, respectively. We
show the system-size dependence of the thermal conduc-
tivity up to N = 8192 in Fig. 4. The numerical error was
smaller than the size of the points. The system size is
sufficiently large to obtain the asymptotic behavior of the
power-law divergence. In the figure, the case with zero
magnetic field and case (II) show a = 1/2, while the
exponent in case (I) is neither 1/2 nor 1/3. The best fit
is 0.375 £ 0.001. This again supports the fact that case (I)
cannot be classified into a known universality class.

We consider the relationship between a and f. To our
knowledge, a rigorous derivation of the relationship
between a and f has never been made. Thus far, there is
only a phenomenological interpretation of the case when
the system has finite sound velocity. The argument is based
on the modified Green-Kubo formula

K~ / ™ arc ). (27)
0

When the system has a finite sound velocity, one phenom-
enologically uses 7y ~ N/c, where c is the sound velocity,
and obtains the relation o = —f + 1. Although it is not
derived rigorously, thus far, it seems to work well. In fact,
the case of zero magnetic field and case (II) follow this
relation. However, in case (I), where no sound wave exists,
this relation is not applicable anymore. Numerical results
indicate 7y ~ N¥ with v ~ 1.5 £ 0.001. This is a nontrivial
effect resulting from the absence of the sound wave.

Discussion.—In this Letter, we studied the heat transfer
in one-dimensional systems with broken time-reversal
symmetry for the first time. We considered systems with
very weak charges under a strong magnetic field so that the
dynamics are dominated by the Lorentz force as well as the
spring forces connecting particles. To clarify the argument
on the exponent, we introduced an exactly solvable model
in the spirit of the ME model. Based on this model, we
found that a new power-law decay exponent can appear. We
will report elsewhere on several other results including the
effects of higher dimensions [33].

In systems without time-reversal symmetry, the standard
fluctuating hydrodynamic theory is not applicable, as the
Euler equations for conserved quantities are not closed
due to the expression of the pseudomomentum. Physically,
the magnetic field induces cyclotron motion and hence, the
particles tend to be localized. Based on this, one might
think that the conservation of pseudomomentum is irrel-
evant to macroscopic behavior and the system may exhibit
diffusive heat conduction. We note that a recent non-
acoustic model with momentum conservation shows dif-
fusive transport [34]. The same conclusion had been
speculated based on the mode-coupling argument for
nonlinear systems with zero sound velocity in Ref. [14].
However, our case showed that anomalous heat conduction
robustly exists and the new power-law decay exponent can
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appear. In order to understand these nontrivial results, a
precise description of the hydrodynamics is required.

The present model clearly shows that the absence of
sound waves cause the violation of the usual relationship
a = —f + 1 that is satisfied for systems with sound waves.
An analytical derivation of a based on the equilibrium
correlation f = 3/4 is difficult in the present study but is
definitely an important open problem.

We thank Stefano Olla, Herbert Spohn, and Yoshimasa
Hidaka for useful discussions. K. S. was supported by JSPS
Grants-in-Aid for Scientific Research No. JP26400404 and
No. JP16H02211. M. S. was supported by JSPS Grant-in-
Aid for Young Scientists (B) JP25800068.

[1] Thermal Transport in Low Dimensions: From Statistical
Physics to Nanoscale Heat Transfer, edited by S. Lepri
(Springer, New York, 2016).

[2] A. Dhar, Heat transport in low-dimensional systems, Adv.
Phys. 57, 457 (2008).

[3] S. Lepri, R. Livi, and A. Politi, Thermal conduction in
classical low-dimensional lattices, Phys. Rep. 377, 1 (2003).

[4] S. Lepri, R. Livi, and A. Politi, Heat Conduction in Chains
of Nonlinear Oscillators, Phys. Rev. Lett. 78, 1896 (1997).

[5] P. Grassberger, W. Nadler, and L. Yang, Heat Conduction
and Entropy Production in a One-Dimensional Hard-
Particle Gas, Phys. Rev. Lett. 89, 180601 (2002).

[6] G. Casati and T. Prosen, Anomalous heat conduction in a
one-dimensional ideal gas, Phys. Rev. E 67, 015203 (2003).

[71 T. Mai, A. Dhar, and O. Narayan, Equilibration and
Universal Heat Conduction in Fermi-Pasta-Ulam Chains,
Phys. Rev. Lett. 98, 184301 (2007).

[8] K. Saito and A. Dhar, Heat Conduction in a Three-
Dimensional Anharmonic Crystal, Phys. Rev. Lett. 104,
040601 (2010).

[9] L. Delfini, S. Lepri, R. Livi, and A. Politi, Self-consistent
mode-coupling approach to one-dimensional heat transport,
Phys. Rev. E 73, 060201 (2006).

[10] A. Pereverzev, Fermi-Pasta-Ulam f lattice: Peierls equation
and anomalous heat conductivity, Phys. Rev. E 68, 056124
(2003).

[11] O. Narayan and S. Ramaswamy, Anomalous Heat
Conduction in One-Dimensional Momentum-Conserving
Systems, Phys. Rev. Lett. 89, 200601 (2002).

[12] J. S. Wang and B. Li, Intriguing Heat Conduction of a Chain
with Transverse Motions, Phys. Rev. Lett. 92, 074302
(2004).

[13] J. Lukkarinen and H. Spohn, Anomalous energy transport in
the FPU-# chain, Commun. Pure Appl. Math. 61, 1753
(2008).

[14] G.R. Lee-Dadswell, B. G. Nickel, and C. G. Gray, Thermal
conductivity and bulk viscosity in quartic oscillator chains,
Phys. Rev. E 72, 031202 (2005).

[15] H. van Beijeren, Exact Results for Anomalous Transport in
One-Dimensional Hamiltonian Systems, Phys. Rev. Lett.
108, 180601 (2012).

[16] H. Spohn, Nonlinear fluctuating hydrodynamics for anhar-
monic chains, J. Stat. Phys. 154, 1191 (2014).

[17] C.B. Mendl and H. Spohn, Dynamic Correlators of Fermi-
Pasta-Ulam Chains and Nonlinear Fluctuating Hydrody-
namics, Phys. Rev. Lett. 111, 230601 (2013).

[18] C.B. Mendl and H. Spohn, Equilibrium time-correlation
functions for one-dimensional hard-point systems, Phys.
Rev. E 90, 012147 (2014).

[19] G. Basile, C. Bernardin, and S. Olla, Momentum Con-
serving Model with Anomalous Thermal Conductivity in
Low Dimensional Systems, Phys. Rev. Lett. 96, 204303
(2006).

[20] G. Basile, C. Bernardin, and S. Olla, Thermal conductivity
for a momentum conservative model, Commun. Math. Phys.
287, 67 (2009).

[21] M. Jara, T. Komorowski, and S. Olla, Superdiffusion of
energy in a chain of harmonic oscillators with noise,
Commun. Math. Phys. 339, 407 (2015).

[22] S. Lepri, C. Mejia-Monasterio, and A. Politi, A stochastic
model of anomalous heat transport: Analytical solution of
the steady state, J. Phys. A 42, 025001 (2009).

[23] L. Delfini, S. Lepri, R. Livi, and A. Politi, Nonequilibrium
Invariant Measure under Heat Flow, Phys. Rev. Lett. 101,
120604 (2008).

[24] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A.
Zettl, Breakdown of Fourier’s Law in Nanotube Thermal
Conductors, Phys. Rev. Lett. 101, 075903 (2008).

[25] V. Lee, C.H. Wu, Z.X. Lou, W.L. Lee, and C.W.
Chang, Divergent and Ultrahigh Thermal Conductivity in
Millimeter-Long Nanotubes, Phys. Rev. Lett. 118, 135901
(2017).

[26] X. Xu et al., Length dependent thermal conductivity in
suspended graphene, Nat. Commun. 5, 3869 (2014).

[27] A. V. Savin and L. I. Manevitch, Solitons in spiral polymeric
macromolecules, Phys. Rev. E 61, 7065 (2000).

[28] B.R. Johnson, J. O. Hirschfelder, and K. Yang, Interaction
of atoms, molecules, and ions with constant electric and
magnetic fields, Rev. Mod. Phys. 55, 109 (1983).

[29] One can see the difference by considering an explicit gauge
potential, e.g., A(q;) = —(¢q;, x B)/2.

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.119.110602 for dispersion relation
and derivation of the Laplace transform.

[31] P.E. Protter, Stochastic Integration and Differential
Equations 2nd ed. (Springer, New York, 2005).

[32] J. M. Thijssen, Computational Physics (Cambridge University
Press, Cambridge, England, 2007).

[33] K. Saito and M. Sasada, Thermal conductivity for a system
of harmonic oscillators in a magnetic field with noise,
arXiv:1706.09668.

[34] T. Komorowski and S. Olla, Diffusive Propagation of energy
in a non-acoustic chain, Arch. Ration. Mech. Anal. 223, 95
(2017).

110602-5


https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1103/PhysRevLett.78.1896
https://doi.org/10.1103/PhysRevLett.89.180601
https://doi.org/10.1103/PhysRevE.67.015203
https://doi.org/10.1103/PhysRevLett.98.184301
https://doi.org/10.1103/PhysRevLett.104.040601
https://doi.org/10.1103/PhysRevLett.104.040601
https://doi.org/10.1103/PhysRevE.73.060201
https://doi.org/10.1103/PhysRevE.68.056124
https://doi.org/10.1103/PhysRevE.68.056124
https://doi.org/10.1103/PhysRevLett.89.200601
https://doi.org/10.1103/PhysRevLett.92.074302
https://doi.org/10.1103/PhysRevLett.92.074302
https://doi.org/10.1002/cpa.20243
https://doi.org/10.1002/cpa.20243
https://doi.org/10.1103/PhysRevE.72.031202
https://doi.org/10.1103/PhysRevLett.108.180601
https://doi.org/10.1103/PhysRevLett.108.180601
https://doi.org/10.1007/s10955-014-0933-y
https://doi.org/10.1103/PhysRevLett.111.230601
https://doi.org/10.1103/PhysRevE.90.012147
https://doi.org/10.1103/PhysRevE.90.012147
https://doi.org/10.1103/PhysRevLett.96.204303
https://doi.org/10.1103/PhysRevLett.96.204303
https://doi.org/10.1007/s00220-008-0662-7
https://doi.org/10.1007/s00220-008-0662-7
https://doi.org/10.1007/s00220-015-2417-6
https://doi.org/10.1088/1751-8113/42/2/025001
https://doi.org/10.1103/PhysRevLett.101.120604
https://doi.org/10.1103/PhysRevLett.101.120604
https://doi.org/10.1103/PhysRevLett.101.075903
https://doi.org/10.1103/PhysRevLett.118.135901
https://doi.org/10.1103/PhysRevLett.118.135901
https://doi.org/10.1038/ncomms4689
https://doi.org/10.1103/PhysRevE.61.7065
https://doi.org/10.1103/RevModPhys.55.109
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.110602
http://arXiv.org/abs/1706.09668
https://doi.org/10.1007/s00205-016-1032-9
https://doi.org/10.1007/s00205-016-1032-9

