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Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to
a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning
as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be
appropriately scaled down with problem size. We derive a temperature scaling law dictating that
temperature must drop at the very least in a logarithmic manner but also possibly as a power law with
problem size. We corroborate our results by experiment and simulations and discuss the implications of
these to practical annealers.
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Introduction.—Quantum computing devices are becom-
ing sufficiently large to undertake computational tasks that
are infeasible using classical computing [1–7]. The theo-
retical underpinning for whether such tasks exist with
physically realizable quantum annealers remains lacking,
despite the excitement brought on by recent technological
breakthroughs that have made programmable quantum
annealing (QA) [8–12] optimizers consisting of thousands
of quantum bits commercially available. Thus far, no
examples of practical relevance have been found to indicate
a superiority ofQAoptimization, i.e., to find bit assignments
that minimize the energy, or cost, of discrete combinatorial
optimization problems, faster than possible classically
[13–20]. Major ongoing efforts continue to build larger,
more densely connected QA devices, in the hope that the
capability to embed larger optimization problems would
eventually reveal the coveted quantum speedup [21–25].
Understanding the robustness of QA optimization to

errors that reduce the final ground state probability is
critical. In this work, we consider perhaps the most
optimistic setting where the only source of error is due
to nonzero temperature. We analyze the theoretical scaling
performance of ideal fixed-temperature quantum annealers
for optimization. We show that even in the case where
annealers are assumed to thermalize instantly (rather than
only in the infinite runtime limit), the energies, or costs,
of their output configurations would be computationally
trivial to achieve (in a sense that we explain). We further
derive a scaling law for QA optimizers and provide
corroboration of our analytical findings by experimental
results obtained from the commercial D-Wave 2X QA
processor [26–30] as well as numerical simulations (our
results equally apply to ideal thermal annealing devices).
We discuss the implications of our results for both past

benchmarking studies and for the engineering requirements
of future QA devices.
Fixed-temperature quantum annealers.—In the adiabatic

limit, closed-system quantum annealers are guaranteed to
find a ground state of the target cost function, or final
Hamiltonian H, they are to solve. The adiabatic theorem
of quantum mechanics ensures that the overlap of the final
state of the system with the ground state manifold of H
approaches unity as the duration of the process increases
[31,32]. For physical quantum annealers that operate at
positive temperatures (T > 0), there is no equivalent guar-
antee of reaching the ground state with high probability. For
long runtimes, an ideal finite-temperature quantum annealer
is expected to sample the Boltzmann distribution of the final
Hamiltonian at the annealer temperature [33].
In what follows, we argue that even instantly therma-

lizing quantum annealers [34] are severely limited as
optimizers due to their finite temperature. For concreteness,
we restrict to annealers for which (i) the number of couplers
scales linearly with the number of qubits N [45], (ii) the
coupling strengths are discretized and are bounded inde-
pendently of problem size, and (iii) the scaling of the free
energy with problem size is not pathological, i.e., that our
system is not tuned to a critical point. Other than the above
standard assumptions, our treatment is general (we discuss
the performance of quantum annealers when some of these
conditions are lifted later on). For clarity, we consider
optimization problems written in terms of a Hamiltonian of
the Ising-type

H ¼
X
hiji

Jijsisj þ
X
i

hisi; ð1Þ

where fsi ¼ �1g are binary Ising spin variables that are to
be optimized over, fJij; hig are the coupling strengths
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between connected spins and external biases, respectively,
and hiji denotes the underlying connectivity graph of the
model. The discussion that follows, however, is not
restricted to any particular model.
Under the above assumptions, the ground state energies,

denoted E0, of any given problem class, scale linearly with
increasing problem size (i.e., the energy is an extensive
property as is generically expected from physical systems)
while the classical minimal gap Δ ¼ E1 − E0 remains
fixed. It follows then [46] that the thermal expectation
values of the intensive energy

heiβ ¼ hHiβ=N; ð2Þ
and specific heat

cβ ¼ ∂heiβ=∂β ¼ −N½he2iβ − hei2β�; ð3Þ
remain finite as N → ∞ for any fixed inverse-temperature
β ¼ 1=T. The intensive energy is discretized in steps of
Δ=N, yet its statistical dispersion σβðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−cβ=N

p
is

much larger. Treating e as a stochastic variable, for large
enough values of N it can be treated as a continuous
variable as the ratio of discretization versus dispersion isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ2=ðcβNÞ

q
decaying to zero for large N. From the

Boltzmann distribution it follows that the probability
density of e goes as pβðeÞ ¼ Zβ

−1eN½sðeÞ−βe�, where Zβ ¼P
ngne

−βEn is the partition function, gn is the degeneracy
of the nth level, i.e., the number of microstates with
HðfsigÞ ¼ En, satisfying 2N ¼ P

n≥0gn, and sðeÞ is the
entropy density [48]. The linear combination ΨβðeÞ ¼
sðeÞ − βe plays the role of a large-deviation functional
for e. The most probable value of e, which we denote by e�,
is given by the maximum of Ψβ. Solving Ψ0

βðe�Þ ¼ 0,
we find [49]

β ¼ ∂s
∂e

����
e¼e�

: ð4Þ

Close to e�, Ψβ can be Taylor expanded as ΨβðeÞ≈
Ψβðe�Þ − ½jΨ00

βðe�Þj=2�ðe − e�Þ2, from which it follows that

pβðeÞ ≈
eNΨβðe�Þ

Zβ
exp

�
−
NjΨ00

βðe�Þj
2

ðe − e�Þ2
�
: ð5Þ

The probability density is thus approximately Gaussian in
the vicinity of e�, although deviations from the Gaussian
behavior are crucial [50]. Moreover, in the limit of large N,
we find

heiβ ¼ e� and cβ ¼
−1

jΨ00
βðe�Þj

: ð6Þ

Therefore, the probability of finding by Boltzmann
sampling any energy e < e� (equivalently, E < e�N) is
exponentially suppressed in N, scaling in fact as
expf−N½Ψβðe�Þ −ΨβðeÞ�g. We thus arrive at the conclu-
sion that even ideal fixed temperature quantum annealers

that thermalize instantaneously to the Gibbs state of the
classical Hamiltonian are exponentially unlikely to find the
ground state since e� > e0 ≡ E0=N.
We now corroborate the above derivation by runs on

the commercial DW2X quantum annealer [26–29]. To do
so, we first generate random instances of differently sized
subgraphs of the DW2X Chimera connectivity graph
[51,52] and run them multiple times on the annealer,
recording the obtained energies [53]. Figure 1 depicts
typical resultant residual energy (E − E0) distributions.
As is evident, increasing the problem size N “pushes”
the energy distribution farther away from E0, as well as
broadening the distribution and making it more Gaussian-
like. In the inset, we measure the departure of hHiβ from E0

and the spread of the energies σβðHÞ over 100 “planted-
solution” [18] instances per subgraph size as a function of
problem size N [54]. For sufficiently large problem sizes,
we find that the scaling of hH − E0iβ is close to linear while
σβðHÞ scales slightly faster than

ffiffiffiffi
N

p
. While the slight

deviations from our analytical predictions suggest that the
DW2X configurations have not fully reached asymptotic
behavior [55], they exhibit a trend that closely matches our
assumptions with the agreement getting better with grow-
ing problem sizes.
Given the scaling of the mean and standard deviation,

we conclude that fixed-temperature quantum annealers will
generate energies e with a fixed distance from e0, or, in
terms of extensive energies, configurations obtained from
fixed-temperature annealers will have energies concen-
trated around E ¼ ð1 − ϵÞE0 for some ϵ > 0 and E0 < 0.

FIG. 1. Distributions of residual energy, E − E0, from DW2X
runs. As problem sizes grow, the distributions become more
Gaussian-like. Inset: Gaussians’ mean (blue) and standard
deviation (red) as a function of problem size, averaged over
100 instances per size. The solid lines correspond to power-law
fits of the average mean with power 0.98� 0.14 and average
standard deviation scaling with power 0.63� 0.09, taking into
account all sizes but the smallest (1.01� 0.62 and 0.57� 0.37,
respectively, if the two smallest sizes are omitted).
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One could now ask what the difficulty is for classical
algorithms to generate energy values in the above range.
This question has been recently answered by the discovery
of a polynomial time approximation scheme (PTAS) for
spin-glasses defined on a Chimera graph [57] (and which
can be easily generalized to any locally connected model),
where reaching such energies can be done efficiently [58].
While the scaling of the PTAS with ϵ is not favorable,
scaling as c1=ϵ for some constant c, in practice there exist
algorithms (e.g., parallel tempering that we discuss later on)
that are known to scale more favorably than PTAS.
Scaling law for quantum annealing temperatures.—In

light of the above, it may seem that quantum annealers are
doomed to fail as optimizers as problem sizes increase. We
now argue that success may be regained if the temperature
of the QA device is appropriately scaled with problem size.
Specifically, we address the question of how the inverse-
temperature β should scale with N such that there is a
probability of at least q of finding the ground state.
An estimate for the required scaling can be given as

follows. From the above analysis, it should be clear that the
probability of finding a ground state at inverse temperature
β will not decay exponentially with system size only if the
ground state falls within the variation of the mean energy,
specifically, if

σβðHÞ ¼ NσβðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−Ncβ

p ð7Þ
is comparable to

hHiβ − E0 ¼ −N
Z

∞

β
dβcβ: ð8Þ

The third law of thermodynamics dictates that the specific
heat cT ≡ dhei=dT goes to zero when T → 0. Assuming a
scaling of the form cT ∼ Tα, or, equivalently, −cβ ∼ β−α−2,
gives

σβðHÞ ∼
ffiffiffiffiffiffiffiffiffi
N

βαþ2

s
and hHiβ − E0 ¼

N
βαþ1

: ð9Þ

For a power-law specific heat, it thus follows that the
sought scaling is β ∼ N1=α. If on the other hand cβ vanishes
exponentially in β, the inverse-temperature scaling will be
milder, of the form β ∼ logN.
To illustrate the above, we next present an analysis of

simulations of randomly generated instances on Chimera
lattices (we study several problem classes and architectures;
see the Supplemental Material [37]). To study the energy
distribution generated by a thermal sampler on these
instances, we use parallel tempering (PT) [59,60], a
Monte Carlo method whereby multiple copies of the
system at different temperatures are simulated [61]. In
Fig. 2, we show an example of how the energy distribution
of a planted-solution instance changes with β. The quali-
tative behavior is similar to what we observe with increas-
ing problem size, whereby decreasing β (increasing the

temperature) pushes the energy distribution to larger
energies and makes it more Gaussian-like.
The behavior of the specific heat cβ as the inverse-

temperature β becomes large is shown in Fig. 3. At large
sizes, the scaling becomes cβ ∝ expð−ΔβÞ as expected
(here, Δ ¼ 4 is the gap). Based on our predictions above,
this should mean that if for a fixed q, the minimum β� such
that pβ�ðE0Þ ≥ q falls in this exponential regime, then we

FIG. 2. Distributions of residual energy, E − E0, from PT
simulations. For a planted-solution instance defined on an
L¼12 Chimera graph, the distributions become more Gaussian-
like as β decreases. For the case of β ¼ 0.75, the mean residual
energy and standard deviation are indicated. Inset: Scaling with
problem size of the median mean energy and median standard
deviation of the energy for β ¼ 1.47 over 100 instances.

FIG. 3. Typical specific heat with inverse temperature.
Behavior of the median specific heat (over 100 instances) for
planted-solution instances with inverse-temperature β for
N ¼ 3872. The behavior transitions from a polynomial scaling
with β to an exponential scaling. Inset: Typical minimum inverse
temperature required for instances of size N such that the
probability of the target energy ET ¼ E0 þ δðNÞ is at least
q ¼ 10−1. Also shown are fits to logN for all three cases and
a power-law fit to cNα that finds α ¼ 0.19� 0.05 for the δ ¼ 0
case, which is almost indistinguishable from the logarithmic fit.
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should observe a scaling β� ∝ logN. Indeed, the inset of
Fig. 3, which shows simulation results of β� versus N,
exhibits the expected logN behavior [62].
While for problem classes with a fixed minimum gap Δ,

one may naively expect cβ to vanish exponentially in
general, implying that a logarithmic scaling of β will
generally be sufficient as our simulations indeed indicate,
it is important to note that two-dimensional spin glasses are
known to exhibit a crossover between an exponential
behavior to a power law [63–66]. This crossover is
characterized by a constant θ ≈ 1=2, whereby the discrete-
ness of the gap Δ is evident only for sizes Nθ=2 ≪ β.
Beyond Nθ=2 ∼ β, the 2d system behaves as if the coupling
distribution is continuous [64,65] at which point the
system can be treated as if with continuous couplings,
for which the specific heat cT scales as Tα with αc ¼ 2ν
[63], where ν ¼ 3.53ð7Þ [66]. Therefore, for an ideal
quantum annealer operating beyond the crossover, a scaling
of β ∼ N1=ð2νÞ≈0.14 is required. We may thus expect the same
crossover to appear for instances defined on the Chimera
lattice, which is 2d like. Interestingly, for the temperature
scaling shown in the inset of Fig. 3, a power-law fit β ∼ Nα

with α ¼ 0.19� 0.05 is almost indistinguishable from
the logarithmic one, with a power that is consistent with
the 2d prediction.
Suboptimal metrics for optimization problems.—For

many classically intractable optimization problems, when
formulated as Ising models, it is crucial that solvers find a
true minimizing bit assignment rather than low-lying
excited states. This is especially true for NP-complete
or -hard problems [67] where suboptimal costs generally
correspond to violated constraints that must be satisfied
(otherwise the resultant configuration is nonsensical
despite its low energy). Nonetheless, it is plausible to
assume the existence of problems for which slightly
suboptimal configurations would still be of value [68].
We thus also study the necessary temperature scaling for
cases where the target energies obey ET ≤ E0 þ δðNÞ
with δðNÞ scaling sublinearly with problem size. In the
inset of Fig. 3, we plot the required scaling of β for
δðNÞ ¼ const and δðNÞ ∝ ffiffiffiffi

N
p

. In both cases we find that
a logarithmic scaling is still essential, albeit with smaller
prefactors.
Conclusions and discussion—We have shown that fixed

temperature quantum annealers can only sample “easily
reachable” energies in the large problem size limit, thereby
posing fundamental limitation on their performance. We
derived a temperature scaling law to ensure that quantum
annealing optimizers find nontrivial energy values with
subexponential probabilities. The scaling of the specific
heat with temperature controls this scaling: if β lies in the
regime where the specific heat scales exponentially with β,
then the inverse temperature of the annealer must scale as
logN. However, further considerations are needed because
of a possible crossover behavior in the specific heat with

temperature and problem size. For Chimera graphs,
because of their essentially two-dimensional structure, this
may lead to a crossover to power law scaling. Little is
known about this crossover in three dimensions or for
different architectures, so this concern may not be mitigated
by a more complex connectivity graph.
Our results shed important light on benchmarking

studies that have found no quantum speedups [17,18,
69–71], identifying temperature as a relevant culprit for
their unfavorable performance. Our analysis is particularly
relevant for both the utility as well as the design of future
QA devices that have been argued to sample from thermal
or close-to-thermal distributions [72], calling their role as
optimization devices into question.
One approach to scaling down the temperature with

problem size is the (theoretically) equivalent scaling up
of the overall energy scale of the Hamiltonian. However,
the rescaling of the total Hamiltonian is also known to be
challenging and may not represent a convenient approach
for a scalable architecture. An alternative approach is to
develop quantum error correction techniques to effectively
increase the energy scale of the Hamiltonian by coupling
multiple qubits to form a single logical qubit [73–78] in
conjunction with classical postprocessing [79–82] or to
effectively decouple the system from the environment
[83–86].
Our results reiterate the need for fault-tolerant error

correction for scalable quantum annealing; however, they
do not preclude the utility of quantum annealing optimizers
for large finite size problems, where engineering challenges
may be overcome to allow the device to operate effectively
at a sufficiently low temperature such that problems of
interest of a finite size may be solved even in the absence of
fault tolerance. Our results only indicate that this “window
of opportunity” cannot be expected to continue as devices
are scaled without further improvements in the device
temperature or energy scale.
While our arguments above indicate that fixed-

temperature quantum annealers may not be scalable as
optimizers, the current study does not pertain to the usage
of quantum annealers as samplers [72,87,88], where the
objective is to sample from the Boltzmann distribution.
The latter objective is known to be a very difficult task (it
is #P hard [89–91]) and little is known about when or if
quantum annealers can provide an advantage in this
regard [92].
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