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Quantum teleportation, the process by which Alice can transfer an unknown quantum state to Bob by
using preshared entanglement and classical communication, is one of the cornerstones of quantum
information. The standard benchmark for certifying quantum teleportation consists in surpassing the
maximum average fidelity between the teleported and the target states that can be achieved classically.
According to this figure of merit, not all entangled states are useful for teleportation. Here we propose a new
benchmark that uses the full information available in a teleportation experiment and prove that all entangled
states can implement a quantum channel which cannot be reproduced classically. We introduce the idea of
nonclassical teleportation witness to certify if a teleportation experiment is genuinely quantum and discuss
how to quantify this phenomenon. Our work provides new techniques for studying teleportation that can be
immediately applied to certify the quality of quantum technologies.
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Quantum teleportation [1] is a cornerstone of quantum
information science, and serves as a primitive in several
quantum information tasks [2–4]. Since the first demon-
strations [5–7], quantum teleportation has been imple-
mented in a variety of physical systems and has become
a test bed for quantum information platforms [8]. In the
ideal setting, quantum teleportation refers to the situation
where Alice shares a maximally entangled state with Bob,
which she uses, in combination with classical communi-
cation, to faithfully transmit a quantum state to Bob, even if
that state is unknown to her.
In order to test that Alice and Bob are performing

quantum teleportation, a third party, which we refer to
as the verifier, provides quantum systems to Alice in states
jωxi, x ¼ 1;…; jxj, which are unknown to her, and asks
her to transmit these states to Bob. By applying a Bell-state
measurement on the input system and her share of the
maximally entangled state, Alice projects Bob’s system
onto the states ρBajωx

¼ UajωxihωxjU†
a, where Ua is a

known unitary operation that depends on the outcome a
of the Bell state measurement. By classically communicat-
ing the outcome a to Bob, he can correct the unwanted
unitary Ua, and then send his system to the verifier, who is
able to check whether it is the same as the one provided
to Alice. Note that for the purpose of verification, it is
completely equivalent if Alice communicates the outcome
a to the verifier instead of Bob, who can then check if the
state Bob sent—which is now uncorrected—is equal to the
state given to Alice, modulo the correction, see Fig. 1.
In any realistic teleportation scheme, the states and

measurements used will not be perfect. In this case the
states that Bob receives after Alice applies a measurement
with POVM elements MVA

a on systems V and A are
given by

ρBajωx
¼ trVA½ðMVA

a ⊗ 1BÞðjωxihωxjV ⊗ ρABÞ�
pðajωxÞ

; ð1Þ

where ρAB is the state shared by Alice and Bob, and
pðajωxÞ ¼ tr½ðMVA

a ⊗ 1BÞðjωxihωxjV ⊗ ρABÞ� is the prob-
ability of the particular outcome a given that the verifier
gives to Alice the state jωxi. The standard figure of merit
used to quantify how well such a teleportation scheme
performs is the average fidelity between the input and
output states of the process [9],

F̄tel ¼
1

jxj
X

a;x

pðajωxÞhωxjUaρ
B
ajωx

U†
ajωxi: ð2Þ

Clearly, in the case of a perfect teleportation scheme,
F̄tel ¼ 1, while in real experiments one always obtains a
smaller value. In the other direction, in a classical telepor-
tation scheme—one where Alice and Bob do not share any
entanglement—the maximum fidelity of teleportation that
they can obtain, called the classical average fidelity, is
denoted by F̄cl. Thus, an imperfect teleportation scheme
is certified to be nonclassical if F̄tel > F̄cl [8]. It turns out
that some entangled states can never lead to F̄tel > F̄cl, a
famous example being bound entangled states [10]. Thus,
according to this benchmark, these entangled states are
useless for teleportation (although they can help in improv-
ing F̄tel of a combined state [11]).
However, notice that one has more information in a

teleportation experiment than simply the value of F̄tel. In
particular, the verifier has access to fjωxigx, fρBajωx

ga;x, and
fpðajωxÞga;x. Whenever these data cannot be explained by
a classical teleportation scheme then nonclassical telepor-
tation has clearly taken place. In principle, there could even
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exist a situation where F̄tel ≤ F̄cl, but for which no classical
teleportation scheme can explain the full data observed in
the experiment.
The goal of this Letter is twofold. First we propose a

method to quantify the nonclassicality of a teleportation
scheme that uses the full data available. This method can
be implemented by semidefinite programming (SDP) and
provides nonclassical teleportation witnesses, which gen-
eralize the average fidelity of teleportation. Second, we
prove that every entangled state can be used to implement a
teleportation scheme that is nonclassical. This is true even
with incomplete Bell state measurements, or when utilizing
inefficient detectors.
Quantifying nonclassicality of teleportation.—For con-

venience, in what follows we will work with the set of
unnormalized teleported states

σBajωx
¼ trVA½ðMVA

a ⊗ 1BÞðωV
x ⊗ ρABÞ�

¼ trV ½MVB
a ðωV

x ⊗ 1BÞ�; ð3Þ

where the state given to Alice by the verifier is now simply
denoted ωV

x , which need not be a pure state, and

MVB
a ¼ trA½ðMVA

a ⊗ 1BÞð1V ⊗ ρABÞ�: ð4Þ

The normalization factor pðajωxÞ ¼ tr½σajωx
� is the prob-

ability that Alice receives outcomes a given that the input
state was ωV

x . Equation (3) describes teleportation as a
collection of channels from V to B, labeled by a, that
transform the input states ωV

x into the (unnormalized) output
states σBajωx

, according to the channel operators MVB
a . Note

that, due to the normalization condition
P

aM
VA
a ¼ 1VA,

the channel operators satisfy
P

aM
VB
a ¼ 1V ⊗ ρB, where ρB

is Bob’s reduced state, which can be seen as a no-signaling
condition.
Consider now the case where ρAB is a separable state,

ρAB ¼ P
λpλρ

A
λ ⊗ ρBλ , which we will see captures a com-

pletely general classical teleportation scheme. In this case
the channel operators (4) become

MVB
a ¼

X

λ

pλtrA½ðMVA
a ⊗ 1BÞð1V ⊗ ρAλ ⊗ ρBλ Þ�

¼
X

λ

pλMV
ajλ ⊗ ρBλ ; ð5Þ

where MV
ajλ ¼ trA½MVA

a ð1V ⊗ ρAλ Þ�, and Eq. (3) becomes

σBajωx
¼

X

λ

pλtr½MV
ajλω

V
x �ρBλ : ð6Þ

This actually describes the most general classical telepor-
tation scheme: a classical variable λ is sampled from pλ and
sent to Alice and Bob. Upon receiving λ Alice measures
the verifiers’ system V using the measurement operators
fMV

ajλga and obtains result a according to the distribution

pðajωx; λÞ ¼ tr½MV
ajλω

V
x �. Bob, in turn, upon receiving λ

prepares the state ρBλ , which he then sends to the verifier as
the teleported state.
Given the structure of this classical teleportation channel,

we can test if a given set of teleportation data is nonclassical
by solving the following optimization problem:

given fσBajωx
ga;x;

T Rðσajωx
Þ ¼ min

r;fMVB
a g

r

s:t:

1

ð1þ rÞ σ
B
ajωx

þ r
ð1þ rÞ

1

oA

1B

d
¼ trV ½MVB

a ðωV
x ⊗ 1BÞ�

∀ a; x;

MVB
a ∈ S ∀ a;

X

a

MVB
a ¼ 1V ⊗

ρB þ r 1B
d

1þ r
; ð7Þ

where oA is the number of outcomes a, S denotes the set
of separable operators (i.e., of the form

P
λτλ ⊗ χλ, with

τλ ≥ 0 and χλ ≥ 0 for all λ). The optimal solution r� of this
problem gives the minimum amount of “white noise” that
has to be added to the teleportation data such that the
mixture admits a classical scheme. We call T Rðσajωx

Þ ¼ r�

the random teleportation robustness of the data fσBajωx
ga;x

[12–14].
Note that although the set of separable operators has a

complicated structure [15], we can nevertheless relax S in
Eq. (7) to be the set of operators with positive partial

FIG. 1. Teleportation scenario: Alice and Bob share a bipartite
state ρAB. A verifier, who wants to check whether this state is
entangled, sends systems in one of the states ωV

x to Alice, and
asks her to transmit it to Bob. Alice applies a global measurement
on the state given to her by the verifier and her share of ρAB,
which produces the states ρBajωx

for Bob. The verifier has to

determine if ρAB is entangled based on the knowledge of fωV
x gx

and fρBajωx
ga;x.

PRL 119, 110501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 SEPTEMBER 2017

110501-2



transposition (PPT) [16], which has a simple characteri-
zation in terms of a single semidefinite constraint. In this
case the above test becomes an instance of a strictly feasible
semidefinite program [17], which can be easily solved with
available software [18]. Moreover, in the case of qubit
teleportation, since the PPT criterion is necessary and
sufficient for testing separability [19], Eq. (7) (without
relaxation) is already an SDP, and therefore straightforward
to solve. In higher dimensions other semidefinite relaxa-
tions of the set of separable operators have also been
proposed and can be readily implemented [20].
Every entangled state leads to nonclassical teleporta-

tion.—As we show in Ref. [21], in the case that (i) one of
Alice’s measurement operators corresponds to a projection
onto a maximally entangled state (e.g., MVA

1 ¼ jΦþihΦþj
with jΦþi ¼ P

d
i¼1 jiiiVA=

ffiffiffi
d

p
) and (ii) the inputs ωx are

tomographically complete, T Rðσajωx
Þ ¼ ERðρABÞ, where

ERðρABÞ [24] is the random robustness of the state ρAB,
defined as

ERðρABÞ ¼ min
r;σS

r

s:t:
1

1þ r
ρAB þ r

1þ r
1
d2

¼ ΣS;

ΣS ∈ S: ð8Þ

Since ERðρABÞ is non-null if and only if ρAB is entangled
[24], this result shows that every entangled state can lead to
a nonclassical teleportation data. Second, since the only
requirement is that one of the Alice’s measurement oper-
ators is a projection onto a maximally entangled state, the
demonstration of nonclassical teleportation can be done
with partial Bell state measurements. This is experimentally
good, since some setups naturally use these type of
measurements due to the impossibility of performing a
complete Bell state measurement with linear optics [25] or
the use of inefficient detectors. Finally, it gives a one-to-one
correspondence between how fragile the entanglement of a
state is and how well this state can be used as a nonclassical
teleportation channel.
In Ref. [21], we also prove a quantitative relation

between the robustness of teleportation and the average
fidelity of teleportation. Namely, for any set of teleported
states coming from ρAB we have that

T Rðσajωx
Þ ≥ F̄telðσajωx

Þ − F̄cl

F̄cl − 1=d
: ð9Þ

This boundmakes it clear that T Rðσajωx
Þ is stronger than F̄tel

as a quantifier of nonclassical teleportation for any set
fσajωx

g, since F̄telðσajωx
Þ > F̄cl implies that T Rðσajωx

Þ>0

[26]. Moreover, this bound can be tight: In the case of
perfect teleportation using a maximally entangled state, a
tomographically complete set of inputs, and a Bell state

measurement, the left-hand side becomes T Rðσajωx
Þ ¼

ERðρABÞ as discussed before. Moreover, since the state
is maximally entangled we have that ERðρABÞ ¼ d [24].
The right-hand side also equals d, since F̄tel ¼ 1 and
F̄cl ¼ 2=ðdþ 1Þ [10].
Nonclassical teleportation witnesses.—An advantage of

having a SDP formulation for teleportation is that it also
provides linear constraints satisfied by any teleportation data
that admit a classical scheme, which generalize the average
fidelity of teleportation. These constraints work as nonclass-
ical teleportation witnesses, which, similarly to the idea of
entanglement witnesses [15], can be used to test the non-
classicality of any experimental teleportation data. In Ref. [21]
we show that the random teleportation robustness T Rðσajωx

Þ,
given by Eq. (7), has the following dual formulation [17]:

given fσBajωx
ga;x;

max
fFajωBx

g;GVB
tr
X

a;x

FB
ajωx

σBajωx
− tr½GBρB�

s:t: 1þ 1

oAd
tr
X

a;x

FB
ajωx

−
1

d
trGVB ≥ 0;

−
X

x

ωV
x ⊗ FB

ajωx
þ GVB ∈ W ∀ a; ð10Þ

The first constraint is a normalization condition, while the
second says thatWa ¼ −

P
xω

V
x ⊗ FB

ajωx
þGVB is an entan-

glement witness for all a.
See Ref. [21] for explicit examples of nonclassical

teleportation witnesses.
Examples.—Let us discuss the relevance of the present

results through two concrete examples. We consider telepor-
tation of the states fðj0i�j1iÞ= ffiffiffi

2
p

;ðj0i�ij1iÞ= ffiffiffi
2

p
;j0i;j1ig

(which are tomographically complete) using the shared
states

ρAB1 ¼ pjΦþihΦþj þ ð1 − pÞ 1
AB

4
ð11Þ

and

ρAB2 ¼ pjΦþihΦþj þ ð1 − pÞj01ih01j ð12Þ

and a full Bell state measurement. The results of the SDP
(7) are provided in Fig. 2 as a function of the average
fidelity of teleportation (2) when we vary 0 ≤ p ≤ 1. First
notice that for the same values of F̄tel the two states give
different values for T R. This means that, although the two
states perform equally as quantified by the average fidelity,
when quantified instead by the random teleportation
robustness ρAB2 produces teleportation data which is more
nonclassical than ρAB1 does. Second, there is a parameter
region for which ρAB2 is useless for teleportation according
to F̄tel (i.e., F̄tel ≤ F̄cl), but T R still certifies that the
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teleportation data it produces could not arise from any
classical teleportation scheme.
Connection to other notions of nonlocality.—The

present study also makes clear some connections between
quantum teleportation and other ideas discussed in quan-
tum foundations, such as EPR steering [27,28] and Bell
inequalities with quantum inputs [29]. EPR steering is
sometimes phrased in terms of a task where Bob wants to
certify that he shares entanglement with Alice, but he does
not trust her. He then asks her to perform some measure-
ments on her share of the state and applies a test based on
the post-measured states he obtains. Notice that this is
exactly the teleportation scenario as presented in Fig. 1,
but with the crucial distinction that the inputs to Alice’s
measuring devices are classical variables x, as opposed to
the quantum variables ωx in teleportation. Crucially, due to
this difference, not every entangled state is useful for
demonstrating steering [30]. Another similar situation is
the recently introduced Bell scenario with quantum inputs
[29] (see also Ref. [31] for variations), which was later
interpreted as the task of measurement-device-independent
entanglement detection [32]. The scenario is the same as in
quantum teleportation, but now Bob also applies a meas-
urement with a quantum input to his share of the state. We
thus see that teleportation relates to Bell inequalities with
quantum inputs in exactly the same way that EPR steering
relates to Bell nonlocality.
Conclusions.—In this Letter we have studied quantum

teleportation using the full data available in an experiment.
We have shown that this allows us to test directly whether
the data has any classical explanation via the method of
semidefinite programming. Using the full data, every
entangled state can be certified to implement nonclassical

teleportation, and we show that this can be tested in an
experimentally friendly way using a teleportation witness.
This overthrows the popular belief that not all entangled
states are useful for teleportation (in particular bound
entangled states), a conclusion which was based upon a
single figure of merit, the average fidelity of teleportation,
which our teleportation witnesses generalize.
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