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Biological organisms have to cope with stochastic variations in both the external environment and the
internal population dynamics. Theoretical studies and laboratory experiments suggest that population
diversification could be an effective bet-hedging strategy for adaptation to varying environments. Here we
show that bet hedging can also be effective against demographic fluctuations that pose a trade-off between
growth and survival for populations even in a constant environment. A species can maximize its overall
abundance in the long term by diversifying into coexisting subpopulations of both “fast-growing” and
“better-surviving” individuals. Our model generalizes statistical physics models of birth-death processes to
incorporate dispersal, during which new populations are founded, and can further incorporate variations of
local environments. In this way, we unify different bet-hedging strategies against demographic and
environmental variations as a generalmeans of adaptation to both types of uncertainties in population growth.
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Growth of biological populations is a stochastic process
subject to various types of uncertainties. In particular,
environmental variations change the growth rate of a
population by affecting the physical condition of individual
organisms, whereas demographic variations cause the
population size to fluctuate due to intrinsic noise in birth
and death processes. Such processes have been vigorously
studied using statistical physics models [1,2].
When considering the evolutionary success of a species,

it is often assumed that a faster growth rate on average
would help a species to achieve greater abundance in the
long term. Thus, for example, in a fluctuating environment,
a population that has the largest long-term average growth
rate is supposed to be the most favored by natural selection.
Under some circumstances, the maximum long-term
growth rate of a population can be achieved by diversifying
into subpopulations of different phenotypes, a mixed
strategy known as “bet hedging” [3,4]. Many studies have
focused on bet hedging in temporally or spatially varying
environments [5–9] or under stochastic ecological inter-
actions [10].
Another factor in population dynamics which has been

less studied is the extinction risk of local populations. If all
individuals in a population happen to die before producing
new offspring, the population will go extinct and never
recover. The probability that such an extinction event
happens can be significant for small populations. This
extinction risk is uniquely caused by demographic fluctua-
tions, which exists even in the absence of environmental
variations.
The growth rate and the extinction risk of a population

may depend differently on the phenotype of individuals.
Consider an asexual population whose individuals have a

birth rate β and a death rate δ. The growth rate of the
population is given by r ¼ β − δ, while the extinction risk
is associated with the factor q ¼ δ=β (it is the probability
that a population founded by one individual goes extinct
[1]; see [11]). Apparently, a large growth rate r does not
guarantee a low extinction risk q. Intuitively, the growth
rate represents the mean of population size change, while
the extinction risk is due to fluctuations around that mean.
Since it is common to have a trade-off between maximizing
the mean and minimizing the fluctuations, one may expect
a similar trade-off between growth and survival. Such
trade-offs have been studied in many fields including
ecology [14–19], economics [20], and engineering [21].
What consequences may this kind of trade-off have on

biological populations? One situation where the trade-off
between growth and survival will be important is during
biological dispersal [14–19]. Indeed, natural resources are
often limited in a local environment, which can support
only a finite population size. A successful species would
gain abundance by spreading to more locations. During
range expansion, new colonies are typically founded by a
small number of individuals. In such circumstances, the
survival of new populations may be a more important factor
than the growth of already established populations. For
example, microbes can be dispersed through interactions
between their hosts and may infect new hosts if they
successfully establish large growing populations.
Here, we quantitatively analyze the trade-off between

growth and survival using a simple statistical physics
model. In this model, individuals can grow within local
“patches” or disperse to new patches. We show that,
depending on the dispersal rate, natural selection may
favor either a fast growth rate or a low extinction risk of
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local populations. More importantly, we find that a bet-
hedging strategy that generates coexisting subpopulations
of fast-growing and better-surviving phenotypes may help a
species achieve the maximum abundance in the long term.
The emergence of the optimal bet-hedging strategy is solely
a consequence of demographic fluctuations. This contrasts
with the results of previous studies that considered bet
hedging as a strategy for maximizing long-term growth in
varying environments.
Our model is illustrated in Fig. 1. We consider a

biological species whose individuals may give birth to a
new individual, die, or disperse to another patch. For
simplicity, we assume that the patches are equally well
connected and have the same carrying capacity K.
Individuals may express different phenotypes, character-
ized by different pairs of birth and death rates; dispersal
happens passively with a predetermined dispersal rate [22].
For simplicity, consider two phenotypes, A and B, which
satisfy rA > rB and qA > qB; hence, phenotype A is fast
growing and phenotype B is better surviving. To allow for
bet-hedging strategies, we assume that each individual
randomly expresses one of the phenotypes with probability
πA ¼ ρ and πB ¼ 1 − ρ, respectively (0 ≤ ρ ≤ 1), regard-
less of its parent’s phenotype [23]; the phenotype does not
change over the lifetime.
A typical time course of the total population size is

shown in Fig. 2 (inset). The simulation starts with one patch
filled with individuals, whose phenotypes are randomly
chosen. After an initial phase with relatively large demo-
graphic fluctuations, the total population size and the
number of occupied patches start to grow at a steady rate.
When many patches are available, the species will

asymptotically expand at this rate and simultaneously
colonize more and more patches. We use this “asymptotic
expansion rate” W to measure the evolutionary success of
the species.
The value of W, calculated using Methods below

(see also [24]), depends on the phenotype distribution ρ.
Let ρ� be the value of ρ that maximizes W. If ρ� ¼ 1 or 0,
then a pure strategy with a single phenotype A or B is

FIG. 1. Schematic illustration of the birth, death, and dispersal processes. Each patch is represented by a grid and has a finite capacity
represented by the number of cells in the grid; an empty cell represents a vacant site, and a colored cell represents an individual, whose
phenotype is indicated by its color. The cells highlighted by thick borders are being updated: A cell with a “þ” sign means an individual
appears, either being born to another individual (sharing a thick border) or having immigrated from another patch (dashed arrow); a cell
with a “−” sign means an individual disappears, either due to death (isolated thick border) or emigration (dashed arrow). Individuals can
move freely within a patch or disperse to any other patch.

FIG. 2. Asymptotic expansion rate W as a function of pheno-
type distribution ρ. The birth, death, and dispersal rates are
βA ¼ 2, δA ¼ 1, βB ¼ 0.5, δB ¼ 0.1, and μ ¼ 0.002, and the
carrying capacity is K ¼ 100. Inset: Time course of the total
population size N and the number of occupied patches M,
simulated using the Gillespie algorithm. The slope of the curves
determines the value of W for a given ρ.
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evolutionarily most successful. However, if the maximum
W is reached at an intermediate value 0 < ρ� < 1, as in
Fig. 2, then a mixed (bet-hedging) strategy, by which a
population constantly diversifies into subpopulations of
both phenotypes, is more successful in the long term.
Those strategies are shown in Fig. 3, where ρ� is plotted

as a function of the dispersal rate μ. We find ρ� ¼ 0 for μ
below a threshold value, μL, and ρ� ¼ 1 above another
threshold, μR. In these two regimes, a pure strategy of
having a single phenotype is thus favored. The fact that
each regime favors a different phenotype demonstrates the
trade-off between growth and survival. More interestingly,
for values of μ between μL and μR, we find a new regime
where 0 < ρ� < 1. In this case, a bet-hedging strategy that
produces mixed populations consisting of both phenotypes
is evolutionarily favorable. Such a favorable bet-hedging
strategy arises only because of intrinsic uncertainties in
demographic fluctuations.
So far, we have assumed a constant environment for all

patches, in contrast to previous studies of bet hedging that
assume a large population in a varying environment [25]. In
the latter case, bet hedging results from a trade-off between
phenotypes that are favorable for different environmental
conditions, whereas in our case the trade-off between
growth and survival is solely due to demographic fluctua-
tions. These two scenarios can be unified in our model by
introducing environmental variations that occur independ-
ently for different patches.
For simplicity, assume that there are two possible

environmental conditions, X and Y, where X is the
“normal” environment considered above and Y is a
“hostile” environment such that the fast-growing phenotype

A in environment X becomes unfavorable in Y, while the
better-surviving phenotype B is unaffected. A good
example is bacterial populations that produce both normal
cells which thrive in growth media but die under antibiotic
treatment and persister cells which are slow growing
but tolerant to antibiotics [26]. Thus, the birth and death

rates of the two phenotypes satisfy βðXÞA > βðYÞA ¼ 0,

δðYÞA ≫ δðXÞA , βðYÞB ¼ βðXÞB , and δðYÞB ¼ δðXÞB . Each patch
switches randomly between the two environmental con-
ditions, with switching rates αX (Y → X) and αY (X → Y).
Hence, the stationary distribution of the environment is
pX ¼ αX=ðαX þ αYÞ≡ ϵ and pY ¼ 1 − ϵ. We assume that
the carrying capacity K and the dispersal rate μ do not
depend on the local environment.
To see the effect of local environmental variations, we

vary the environment distribution ϵ while keeping α≡
αX þ αY fixed. The optimal phenotype distribution ρ� that
maximizes W now depends on both μ and ϵ. This can be
characterized by a “phase diagram” shown in Fig. 4 [27].
Again, there are three regimes corresponding to pure
strategies ρ� ¼ 0 or 1 and a mixed strategy 0 < ρ� < 1.
The top edge (ϵ ¼ 1) corresponds to the case where the
environment is X at all times, the same as in Fig. 3, with a
0 < ρ� < 1 phase in between the threshold values μL and
μR. This mixed phase extends to smaller values of ϵ, until
reaching a point ðμT; ϵTÞ, where it disappears and is
replaced by a sharp boundary between the pure phases
ρ� ¼ 0 and 1.
The topology of the phase diagram can be largely

inferred from the behavior of ρ� near the edges of the

FIG. 3. Optimal phenotype distribution ρ� as a function of
dispersal rate μ, where one phenotype has a faster growth rate and
the other has a lower extinction risk. The birth and death rates of
each phenotype are βA ¼ 2, δA ¼ 1, βB ¼ 0.5, and δB ¼ 0.1; the
carrying capacity of each patch is K ¼ 100. For dispersal rates
between μL and μR, a mixed strategy offers the maximum
asymptotic expansion rate for the species.

FIG. 4. Optimal phenotype distribution ρ� for different values
of the dispersal rate μ and the environment distribution ϵ. The
shaded region marks a 0 < ρ� < 1 phase in which a mixed
strategy offers the maximum asymptotic expansion rate. The

birth and death rates are βðXÞA ¼ 2, δðXÞA ¼ 1, βðYÞA ¼ 0, δðYÞA ¼ 10,

βðXÞB ¼ βðYÞB ¼ 0.5, and δðXÞB ¼ δðYÞB ¼ 0.1. Each patch has carry-
ing capacity K ¼ 100 and environment switching rates α ¼ 0.1.
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diagram, i.e., in the limits ϵ → 0 or 1 and μ → 0 or ∞,
which can be found analytically [24]. Intuitively, near the
bottom edge (ϵ → 0), ρ� ¼ 0, since phenotype A is unfit for
a constantly hostile environment Y. On the far left (μ < μL),
ρ� ¼ 0 for all ϵ, because phenotype A is disadvantageous
even if the environment is always favorable (ϵ ¼ 1). On the
far right (μ ≫ μR), there is a threshold value ϵC, above
which ρ� ¼ 1 and below which ρ� ¼ 0 [24]. By smoothly
interpolating the phases of ρ� from the edges to the middle
of the diagram, we recover the shape of Fig. 4.
The phase diagram shows that different bet-hedging

strategies against demographic and environmental varia-
tions are special cases of a general adaptation strategy
against both types of uncertainties. The shape of the
diagram changes depending on the phenotypes and the
environments [28]. In extreme cases, bet hedging could
arise mainly because of demographic fluctuations, such as
when phenotype A is fast growing and phenotype B is
better surviving in both environments X and Y [Fig. S3(a)].
Alternatively, bet hedging may be optimal mainly due to
environmental variations, such as when phenotype A is
both fast growing and better surviving in environment X,
whereas phenotype B is fast growing and better surviving
in Y [Fig. S3(b)].
Our results indicate the generality of bet hedging as a

means of coping with various types of uncertainties
encountered by biological populations. In reality, organ-
isms live in much more complex environments and interact
with many other species—their habitats may be spatially
structured, and their dispersal may be affected by ecologi-
cal conditions [15–19]. Nevertheless, our simple model,
which shows that organisms can bet hedge even against
purely stochastic demographic fluctuations, clearly sug-
gests a broader perspective for understanding the advantage
of bet-hedging behavior widely observed in nature.
The trade-off between growth and survival exists in

many situations and is not particular to the simple dispersal
process considered in our model. The idea that bet hedging
can be effective against stochastic fluctuations due to small
numbers is applicable to other fields, such as financial
investment and information processing.

Methods.—Here we briefly describe methods for calcu-
lating the asymptotic expansion rate W and the optimal
phenotype distribution ρ� for the basic model with a
constant environment; technical details and generalization
to locally fluctuating environments are given in Ref. [24].
For a given dispersal rate μ, W is calculated by consid-

ering the following “patch dynamics” [24]. Let a patch
be labeled by the type Pnl if it has n individuals, l of
which have phenotype A and n − l phenotype B,
satisfying 0 ≤ n ≤ K and 0 ≤ l ≤ n. Letmnl be the number
of such patches; then the number of occupied patches is
M ¼ P

n;lmnl, and the total population size is
N ¼ P

n;lnmnl. The birth, death, and dispersal processes
can be described in terms of the patches as

Pn;l⟶
ρβnl Pnþ1;lþ1; ð1Þ

Pn;l⟶
ð1−ρÞβnl

Pnþ1;l; ð2Þ

Pn;l⟶
γnl Pn−1;l−1; ð3Þ

Pn;l⟶
δnl Pn−1;l; ð4Þ

Pn;l⟶
μl Pn−1;l−1 þ P1;1; ð5Þ

Pn;l⟶
μn−l Pn−1;l þ P1;0; ð6Þ

where the rate constants are βnl ¼ ½βAlþ βBðn − lÞ�ð1−
n=KÞ, γnl ¼ δAlð1 − n=KÞ, δnl ¼ δBðn − lÞð1 − n=KÞ, and
μn ¼ μn. For (5) and (6), we have assumed that there is a
large supply of available patches, so that a dispersed
individual would always end up in an empty patch. The
deterministic dynamics of the patch numbers is given by

_mn;l ¼ ρβn−1;l−1mn−1;l−1þð1−ρÞβn−1;lmn−1;l

þðγnþ1;lþ1þμlþ1Þmnþ1;lþ1þðδnþ1;lþμn−lþ1Þmnþ1;l

− ðβn;lþ γn;lþδn;lþμnÞmn;l

þδn;1
XK

n0¼1

Xn0

l0¼0

ðδl;1μl0 þδl;0μn0−l0 Þmn0;l0 : ð7Þ

This equation can be cast in a matrix form (with composite
indices): _mnl ¼

P
n0l0Hnl;n0l0mn0l0 . The largest real eigen-

value of the matrix H yields W, which can then be
numerically maximized over ρ to find ρ� [27].
Approximate expressions of W can be obtained in the

limit where the dispersal rate μ is large or small [24]. For
μ ≫ βa and δa, where a ¼ A or B, we find W ≈ rm, where
rmðρÞ is the growth rate of a mixed population with
phenotype distribution ρ. Intuitively, when the dispersal
rate is high, individuals move freely between the patches,
so the whole species behaves as one large population, and
henceW is given by rm. Now, rmðρÞ increases with ρ, since
the higher the percentage of phenotype A is, the faster the
population grows. Therefore, in this regime, maximizingW
yields ρ� ¼ 1, which means the fast-growing phenotype A
is favored.
On the other hand, for μ ≪ βa=K and δa=K, we find

W ≈ μKð1 − qmÞ, where qmðρÞ is the probability that a
mixed population founded by one individual goes extinct
before reaching the carrying capacity [24]. Intuitively,
when the dispersal rate is low, the occupied patches are
mostly full; hence, the overall rate of dispersal to new
patches is proportional to μK; among those colonization
attempts, only a fraction escapes local extinction, hence
the factor ð1 − qmÞ. But qmðρÞ increases with ρ, because the
larger the proportion of phenotype B, the lower the
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extinction risk. Hence, in this regime, W is maximized by
ρ� ¼ 0, favoring the better-surviving phenotype B.
The value of ρ� increases continuously from 0 to 1 as μ

varies between two thresholds μL and μR. The values of
μL and μR depend on the parameters ðβa; δaÞ. For a wide
range of parameters that satisfy rA > rB and qA > qB, the
0 < ρ� < 1 regime exists [27], where a bet-hedging strat-
egy is most favorable.
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