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Active matter defines a class of far-away-from-equilibrium systems comprising self-driven microparticles.
Their anomalous physical properties could be applied in areas such as mixing or separation, micropumps, and
self-healing materials. To realize such applications, a thorough understanding of the physical mechanisms as
well as the development of methods to manipulate various active systems is required. Using a coarse-grained
active liquid crystal model, we designed and investigated a single self-driven droplet which encapsulated
a dense suspension comprising nonmotile but mobile active particles that generate extensile stresses. We
showed that such droplets can be driven into motion and can have tunable mobilities owing to their
internal collective motion, which is characterized by induced active flows and motile disclination defects.
Furthermore, it was illustrated that the interplay among the internal directional flows, liquid crystalline
structures, droplet size, and surface tension resulted in different types of locomotion and rotation.
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Active matter systems are far-from-equilibrium systems
comprising biological or synthetic microstructures that
convert energy from the local environment to mechanical
work [1]. In these systems, particle motions effectively
exert active stresses upon the ambient liquid, which itself
acts as a coupling medium for complex dynamics as
multiparticle interactions within the solvent can manifest
themselves as large-scale dynamics at the macroscale
[2–5]. To take complete advantage of the anomalous proper-
ties of active matter (e.g., large-scale induced motion,
enhanced diffusion, and energy conversion), it is essential
to design biomimetic materials powered by collective
motions. For example, fascinating synthetic bio-active fluids
arise when dense suspensions of microtubules (MTs) are
interconnected by walking molecular motors to form active
polymer networks [6–8]. It has been found that the sliding
MTs are hydrodynamically unstable as they effectively exert
extensile dipolar stresses upon the liquid, and will thus
induce active flows to bend the aligned structures, leading to
an active liquid-crystalline phase with motile disclination
defects [9–12]. Such hydrodynamic coupling of the nem-
atic-bending deformations with the generation of jetlike
active flows is considerably robust, and has been identified
as the “power source” of complex active nematic flows.
To effectively control the collective dynamics in various

internally driven systems, it is critical to manipulate the
emergent coherent structures. One way of doing this is to
tune the suspension concentration and the amount of
chemical fuels [6,13–15]. Alternatively, we can take
advantage of the particle interactions, either individually
or collectively, with obstacles and geometric boundaries to
manipulate the system more directly. By trapping active
suspensions (such as Pusher swimmers or Quincke rollers)

within the straight and curved boundaries, stable flow
patterns, such as unidirectional circulations, traveling
waves, density shocks, and rotating vortices, have already
been constructed [16–24]. More interestingly, active polar
gels under soft confinement by surface tension are able to
generate internal flows to break symmetry and drive the
whole-body movement [25–27].
In this Letter we construct a coarse-grained liquid crystal

model to study how active nematics interact with a deform-
able interface by encapsulating a concentrated active sus-
pension in a droplet. We show that the interplay between the
internal active nematic flows and soft confinement due to
surface tension can generate rich drop translation and rotation
dynamics. To begin with, we consider rodlike microparticles
that elongate through nearly symmetric stretching or growth,
such as MT bundles undergoing polarity sorting [6,8].
The ensemble dynamics can be described through a proba-
bility distribution function Ψðx;p; tÞ that satisfies a
Smoluchowski equation [11,16,28,29] ð∂Ψ=∂tÞþ∇·ð _xΨÞþ
∇p ·ð _pΨÞ¼0, where x and p (jpj ¼ 1) represent the rod’s
center-of-mass (c.m.) position and orientation, respectively;
∇ is a spatial derivative and ∇p ¼ ðI − ppÞ · ∂=∂p is a
surface derivative on the unit sphere. We further assume
that the microparticles are nonmotile and only advected
by fluid flow, which is described by the translational flux:
_x ¼ u − dT∇ lnΨ, where u is the induced local fluid
velocity and dT is the translational diffusion coefficient. In
the meantime, these slender particles rotate due to the fluid
velocity gradient∇u and the enhanced steric interactions at a
finite concentrationwhich can be incorporated into themodel
by introducing a local mean-field alignment torque resultant
from a Maier–Saupe steric potential [11,12,30,31]. Then we
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extend the classical Jeffery’s orbit [32] and define the
rotational flux as _p¼ðI−ppÞ ·ð∇uþ2ζDÞ ·p−dR∇p lnΨ,
where the coefficients dR and ζ respectively characterize the
rotational diffusion and the mean-field torque strength.
Instead of solving the Smoluchowski equation directly, we
tookmoment average [28] to derive a coarse-grained equation
for the second moment-tensor D ¼ R

p ppΨdp, which is
given by

D
∇ þ 2E∶S ¼ 4ζðD ·D −D∶SÞ þ dTΔD − 4dR

�

D −
I
2

�

ð1Þ

whereD
∇ ¼ ð∂D=∂tÞ þ u ·∇D − ð∇u ·DþD · ∇uTÞ is an

upper-convected time derivative, and E ¼ ð∇uþ∇uTÞ=2
is the rate-of-strain tensor. The fourth-moment tensor
S ¼ R

p ppppΨBdp is expressed in terms of D through the
so-called Bingham closure [33] by employing an axisym-
metric distribution function ΨB which arises naturally as
describing nematically ordered steady states due to the
balance between the rotational diffusion and the Maier-
Saupe alignment torque in the kinetic model [34,35]. Note
that while these active particles cannot self-swim, their
elongation or stretching motions effectively exert dipolar
stresses upon the liquid, which may eventually lead to large-
scale collective dynamics through the basic transitions and
instabilities associated with motile suspensions [34].
Next, we consider such a concentrated active suspension

being encapsulated in a 2D droplet that is immersed in a
Newtonian liquid. The velocity field u of the entire domain
is assumed to be incompressible (i.e.,∇ · u ¼ 0) and can be
solved by a forced Stokes equation:

∇p −∇2u ¼ σμ

ϵ
∇cþ∇ · ðcΣÞ: ð2Þ

The first forcing term on the right-hand side is related to
the surface tension (with coefficient σ). Here we employed
a diffuse interface approach to treat the sharp fluid-fluid
interface as continuous variations of a phase function c
(0 ≤ c ≤ 1). Then the phase segregation of the two immis-
cible fluids can be described by a smooth but narrow
transition of c across the interface with a small thickness of
order ϵ, following a standard Cahn-Hilliard model:

∂c
∂t þ u · ∇c ¼ dc∇2μ; ð3Þ

where dc is known as a mobility coefficient and μ ¼
cðc − 1Þðc − 1

2
Þ − ϵ2∇2c is a chemical potential that guar-

antees a smooth variation of c within the interfacial region
[44,45]. The second forcing term drives the internal
collective dynamics, due to the extra particle stress which
is obtained as a configurational average of the force dipoles
exerted by the particles on the fluid, and takes the form
Σ ¼ αDþ βS∶ E − 2ζβðD · D − S∶DÞ. Here the three
terms arise from a permanent dipole due to the extensile

stretching motion with the strength coefficient α < 0,
resistance to the local flow due to particle rigidity (β is
a shape factor), and steric interactions, respectively. The
reader is referred to more details on the kinetic model,
coarse-graining through Bingham closure, normalization,
and parameter choice in the Supplemental Material [35].
Assuming that the droplet is initially circular with a radius

R and carries a suspension that is approximately uniformly
isotropic, we solve the governing equations (1)–(3) in a
periodic square domain by using a pseudospectral method
over long time periods [35]. As shown in Fig. 1, after the
initial transient, we captured a quasisteady self-propelling
motion during which the droplet performed swimming
strokes as its body periodically wiggles; see movie S1. We
refer to this motion as a “propeller”mode, which is different
from the steady-state translation of a mobile cell driven
by internal active flows [26,27], and is instead somewhat
reminiscent of the undulating swimming of nematodes [46].
Periodic genesis and continual propagation of �1=2

disclination defects were observed during the propelling
motion, as highlighted in Fig. 1. In (a), the nematic field
shows that a pair of�1=2 defects, once born, separate from

FIG. 1. Sequential snapshots of the dynamics of a propeller
droplet. (a)–(c): the nematic director field superposed on the color
map of the scalar order parameter 0 ≤ sðx; tÞ ≤ 1 (s is twice the
principal eigenvalue of Q ¼ D − I=2). The dashed line in the
lower left corner represents the averaged propelling direction,
while the arrow indicates the instantaneous moving direction of
theþ1=2 defect. (d)–(f): the background fluid velocity vector field
superposed upon the color map of the associated vorticity. (g)–(i):
the body-force vector field [i.e., f ¼ ∇ · ðcΣÞ], superposed on its
magnitude. The arrows in (h) and (i) represent the contraction
directions. The parameters are chosen as α ¼ −2.0, R ¼ 1.25,
σ ¼ 3.0, β ¼ 0.874, ζ ¼ 0.5, and dR ¼ dT ¼ dc ¼ 0.05.
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each other along an incipient crack. The −1=2 defect
quickly vanishes near the interface, while the þ1=2 defect
keeps moving forward. Panel (b) shows that the droplet
migrates in the direction of defect motion (marked by the
arrow) and elongates into an elliptic shape with a global
alignment approximately along the long axis. In the mean-
time, the body is slightly bent towards the upper right
corner (highlighted by the “backbone” marked by a dashed
line), which naturally selects the direction of the bending
deformation for the next stroke, as marked by the arrow in
(c). The velocity-vorticity maps in Figs. 1(d)–1(f) exhibit
an evolution of the internal flow pattern during one stroke.
A fluid jet is developed to bend the nematic field lines,
“carrying” the propagating þ1=2 defect with two rolling
vortices of opposite signs. The vorticity field is strength-
ened and weakened through the various stages of the
strokes, with the jet direction switching periodically as
the Propeller wiggles.
The body force [f¼∇·ðcΣÞ] distribution in Figs. 1(g)–1(i)

clearly shows that a net forcegeneration is associatedwith the
motile þ1=2 defect [11,12]. Moreover, the confinement
effect manifests itself by the generation of a surface tension
force across the interface as the droplet bottom contracts (h),
followed shortly thereafter by contractions of both ends of the
droplet (i). Such internal force generation and the accom-
panying material deformation typically suggest an elastic
behavior of the ordered fluid, which can be easily seen in the
limit where all the rodlike particles are perfectly aligned.
When also neglecting diffusion, the active stress Σa ¼ αD

follows the evolution equation: Σa

∇ þ ð2=αÞðΣa∶EÞΣa ¼ 0
[35]. Compared with simple neo-Hookean elasticity [47,48]

(i.e., Σ
∇ ¼ 0) where the elastic stress can be infinite, the

second term here suggests that the nematic elasticity is
modulated by flow via a constraint stress due to particle
rigidity, which effectively bounds the active stress.
Next, we quantified the internal structure variations and

correlated them with the propelling motion. We first define
the local entropy density fðx; tÞ ¼ R

p 2πψB log ð2πψBÞdp
by making use of a reconstructed distribution function
ψB through Bingham closure [34,35], which, as shown on
the right in Fig. 2, characterizes the high- and low-
order regimes well. Then, the total system entropy can
be defined as FðtÞ ¼ R

V fðx; tÞdV, which fluctuates peri-
odically and varies in phase with the mean order
SðtÞ ¼ 1=V

R
V sðx; tÞdS. In this case, the stroke period

was measured to be T0 ≈ 15.0 during which the þ1=2
defect approximately travels end-to-end through the drop-
let’s long axis of length 3.0; while the droplet c.m. position
moves a distance of about 1.0. Hence we estimate theþ1=2
defect moves about 3–4 times faster than the propeller.
Over a wide range of parameters (see an example of

phase diagram in Fig. S3 [35]), similar propeller modes are
observed in a narrow regime for relatively small droplets.
As the droplet size increases, the internal dynamics quickly

switch to become circulatory without generating significant
amounts of translation, especially when the interface is
less deformable (i.e., with large σ). The motion shown in
Figs. 3(a) and 3(b) is referred to as a “rotor” mode (see
movie S2). A pair of þ1=2 defects quickly form as the
system deviates from its initial isotropic state [panel(a)]
and then settles into a quasisteady rotating motion with a
circulating flow [panel(b)], which is very similar to the
rotating flow confined in a rigid circular disk [16,18,34,49].
As R increases further, multiple þ1=2 defects are gener-
ated, and stream inside the droplet, leading to seemingly
chaotic internal flows shown in panel (c), as well as random
drop movement (see movie S3).
The observed collective motion under soft confinement

can be further understood by examining a concatenation
of two instabilities (see snapshots in Fig. S4 [35]). Starting
from near isotropy, the system spontaneously evolves
toward a nematic state. This can be approximately under-
stood by performing a linear stability analysis for an
unbounded suspension from which we obtain a maximum
growth rate for a long-wave instability at k ¼ 0 according
to λmax ¼ ðζβ − 2αÞ=ð2β þ 8Þ þ ζ − 4dR [35]. Note that
the isotropic-nematic (I-N) transition is independent of
hydrodynamics, and instead due to the inclusion of steric
interactions via the Maier-Saupe potential which permits an
aligned base-state solution as a balance between the steric
alignment torque and rotational diffusion [35]. In 2D, the
transition is characterized by a supercritical pitchfork
bifurcation occurring at ζ ≥ 4dR [11,31].
Immediately after the I-N transition, a bending instability

develops from the nematic state [11]. The complex dynam-
ics will then be determined by the interplay between the
induced (destabilizing) flow and the (stabilizing) surface
tension force. It appears that the droplet must be larger than
some emergent nematic structures, such as the�1=2 defects
and incipient cracks (see theoretical predictions from linear
analyses as well as comparisons with numerical simulations
in Figs. S5 and S6 [35], respectively) to facilitate the
generation of internal nematic flows. Nevertheless, the
length scale selection is far more complex when the surface
tension coefficient is small, which allows for considerably
large droplet deformation or even breakup. As illustrated in

FIG. 2. Left: mean order and total entropy as a function of time
during a propelling motion. Right: nematic director field super-
posed on the color map of entropy density. The green dotted line
represents the c.m. trajectory.
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Fig. 3(d), when choosing R ¼ 1.0 and σ ¼ 0.5, while being
aligned and extending in the x direction, the droplet
eventually reaches an equilibrium rodlike shape as the
horizontal extension is balanced by the surface tension
force at the droplet’s two ends. In themeantime, the resultant
contraction in the y direction effectively suppresses the
instability development. Thus in the regimes with relatively
small σ, we can tune the other parameters to construct
various stationary shapes without internal flow generation;
see Fig. 3(d).
Lastly, we highlight the distinctive features of various

modes of droplet motion. As shown in Fig. 4(a), we tracked
the c.m. trajectories for three typical propelling motions.
In this figure, the droplet with a highmobility (red line) has a
moderate size and surface tension coefficient. This is
because the interfacial elasticity facilitates droplet elonga-
tion to complywith themoving jet so that it can travel further
during each stroke, leading to an increased amount of
translation. Curiously, a propeller may sometimes “tumble”
by making turns (e.g., turning points T1 and T2; see movie
S4) after traversing a long distance. It is important to keep in
mind that a stable propelling motion requires a synchroni-
zation of the structure variation, the internal flow develop-
ment, and the interactions of active nematics and surface

tension. The combined effect yields a regular bias in the
bending direction during each stroke [see Figs. 1(a)–1(c)].
As illustrated in the top-left inset of Fig. 4(a), a certain
degree of mismatch of the internal dynamics near T1 or T2

in fact causes the body to bend and then buckle in the
“opposite” direction (marked by the red backbone), which
effectively flips the c.m. trajectory thereafter.
The shape of the propeller with the higher surface

tension (blue line) appears to be more rounded, which
means that the jet has a shorter distance to travel; this also
reduces control over the swimming direction (for more
details, see Fig. S8 [35]). It also takes much longer for such
a propeller to settle into a stable stroking motion since
irregular turns occur frequently. To examine the propulsive
efficiency of the propellers, we projected their c.m. tra-
jectory onto the transverse and the swimming directions
whose ratio yields a Strouhal number St. Indeed, the first
propeller (red line) was more efficient at swimming; it had a
lower estimated St value of 0.43 compared with 0.67 for the
second one (blue line). In addition, when the droplet is
relatively large in size (green line), two þ1=2 defects may
occur simultaneously to drive complex internal dynamics,
and can even cause a switch from propelling to rotating
motion (see movie S5).
The corresponding MSD measurements in panel (b) sug-

gest that the propelling motion can be superdiffusive at
relatively long (dimensionless) time scales (t ∼ 103),
although it eventually becomes diffusive at even larger
time scales. Moreover, we show that a propeller’s mobility
can be tuned by orders of magnitude when the design
parameters are appropriately optimized. Conversely, since a
rotor typically does not generate significant translation
motions [see trajectory in panel (a) and also movie S2], the
MSD (green line-open circle) may capture interesting mode

FIG. 3. Active nematic states in relatively large droplets. (a) and
(b) show the Rotor’s (R ¼ 2.0 and σ ¼ 10.0) nematic and flow
fields, respectively. The angle θ in (a) represents the orientation of
the long axis; the dashed line in (b) approximates the velocity
profile. (c) The nematic field of a considerably larger droplet
that encapsulates multiple defects (R ¼ 4.0 and σ ¼ 5.0).
(d) The nematic field of slender (R ¼ 1.0 and σ ¼ 0.5) and thick
(inset: R ¼ 1.0 and σ ¼ 0.8) droplets at equilibrium without
internal flows. The dashed lines represent the change in shape.
The other parameters are chosen as α ¼ −2.0, β ¼ 0.874,
ζ ¼ 0.5, and dR ¼ dT ¼ dc ¼ 0.05.
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FIG. 4. (a) Typical c.m. trajectories of the self-propelling and
rotating droplets. The red line corresponds to the case in Fig. 1
with σ ¼ 3.0 and R ¼ 1.25; the blue and green lines represent the
cases with a stronger surface tension (σ ¼ 5.0 and R ¼ 1.25) and
larger size (σ ¼ 2.0 and R ¼ 1.5), respectively. Top left inset: the
backbone position suggests bending in the opposite direction (red
solid line) compared with the regular bending (grey dashed line).
Top right inset: an enlarged view of the c.m. trajectory. (b) MSD.
Inset: the Rotor’s orientation angle suggests a tumbling motion.
The other parameters are chosen as α ¼ −2.0, β ¼ 0.874, ζ ¼ 0.5
and dR ¼ dT ¼ dc ¼ 0.05.
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switches as the drop settles into a steady tumbling motion
as measured via the rotation speed of its long axis; see the
inset of Fig. 4(b).
We have studied other aspects of the active droplets.

For example, we observed that the internal flow strength
(characterized by the vorticity and maximum velocity) of
rotors is typically greater than that of propellers, which is
due to the enhanced hydrodynamic interactions between
the two þ1=2 defects. When multiple droplets exist, they
coalesce at contact, leading to more frequent mode switch-
ing. It would be intriguing to investigate 3D cases in which
the topological structures are much more complicated as
well as to develop similar models for self-propelling
microparticles to incorporate polarity. Furthermore, by
combining such models with large-scale discrete particle
simulation tools, it may be possible to construct bottom-up
multiscale toolkits to facilitate the design and optimization
of novel active materials.

T. G. acknowledges fruitful discussions with M. Shelley,
S. Fürthauer, E. Lushi, E. Nazockdast, H. Zhao, and
anonymous reviewers’ helpful comments. This work is
funded by National Science Foundation Grant No. DMS-
1619960.

*gaotong@egr.msu.edu
[1] S. Ramaswamy, The mechanics and statistics of active

matter, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).
[2] D. Saintillan and M. Shelley, Active suspensions and their

nonlinear models, C.R. Phys. 14, 497 (2013).
[3] D. Koch and G. Subramanian, Collective hydrodynamics of

swimming microorganisms: Living fluids, Annu. Rev. Fluid
Mech. 43, 637 (2011).

[4] M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool,
J. Prost, M. Rao, and R. Simha, Hydrodynamics of soft
active matter, Rev. Mod. Phys. 85, 1143 (2013).

[5] M. Shelley, The dynamics of microtubule/motor-protein
assemblies in biology and physics, Annu. Rev. Fluid Mech.
(to be published).

[6] T. Sanchez, D. Chen, S. DeCamp, M. Heymann, and Z.
Dogic, Spontaneous motion in hierarchically assembled
active matter, Nature (London) 491, 431 (2012).

[7] F. Keber, E. Loiseau, T. Sanchez, S. DeCamp, L. Giomi, M.
Bowick, M. Marchetti, Z. Dogic, and A. Bausch, Topology
and dynamics of active nematic vesicles, Science 345, 1135
(2014).

[8] S. Decamp, G. Redner, A. Baskaran, M. Hagan, and Z.
Dogic, Orientational order of motile defects in active
nematics, Nat. Mater. 14, 1110 (2015).

[9] S. Thampi, R. Golestanian, and J. Yeomans, Velocity
Correlations in an Active Nematic, Phys. Rev. Lett. 111,
118101 (2013).

[10] L. Giomi, Geometry and Topology of Turbulence in Active
Nematics, Phys. Rev. X 5, 031003 (2015).

[11] T. Gao, R. Blackwell, M. Glaser, M. Betterton, and M.
Shelley, Multiscale Polar Theory of Microtubule and Motor-
Protein Assemblies, Phys. Rev. Lett. 114, 048101 (2015).

[12] T. Gao, R. Blackwell, M. Glaser, M. Betterton, and M.
Shelley, Multiscale modeling and simulation of microtubule/
motor protein assemblies, Phys. Rev. E 92, 062709 (2015).

[13] A. Sokolov, I. Aranson, J. Kessler, and R. Goldstein,
Concentration Dependence of the Collective Dynamics of
Swimming Bacteria, Phys. Rev. Lett. 98, 158102 (2007).

[14] D. Saintillan and M. Shelley, Emergence of coherent
structures and large-scale flows in motile suspensions, J.
R. Soc. Interface 9, 571 (2012).

[15] G. Henkin, S. J. DeCamp, D. T. N. Chen, T. Sanchez, and
Z. Dogic, Tunable dynamics of microtubule-based active
isotropic gels, Phil. Trans. R. Soc. A 372, 20140142 (2014).

[16] F. Woodhouse and R. Goldstein, Spontaneous Circulation of
Confined Active Suspensions, Phys. Rev. Lett. 109, 168105
(2012).

[17] M.Ravnik and J. Yeomans, ConfinedActiveNematic Flow in
Cylindrical Capillaries, Phys. Rev. Lett. 110, 026001 (2013).

[18] H. Wioland, F. Woodhouse, J. Dunkel, J. Kessler, and R.
Goldstein, Confinement Stabilizes a Bacterial Suspension
into a Spiral Vortex, Phys. Rev. Lett. 110, 268102 (2013).

[19] A. Bricard, J. Caussin, N. Desreumaux, O. Dauchot, and D.
Bartolo, Emergence of macroscopic directed motion in pop-
ulations of motile colloids, Nature (London) 503, 95 (2013).

[20] A. Bricard, J. Caussin, D. Das, C. Savoie, V. Chikkadi, K.
Shitara, O. Chepizhko, F. Peruani, D. Saintillan, and D.
Bartolo, Emergent vortices in populations of confined
colloidal rollers, Nat. Commun. 6, 7470 (2015).

[21] B. Ezhilan and D. Saintillan, Transport of a dilute active
suspension in pressure-driven channel flow, J. Fluid Mech.
777, 482 (2015).

[22] A. C. H. Tsang and E. Kanso, Density Shock Waves in
Confined Microswimmers, Phys. Rev. Lett. 116, 048101
(2016).

[23] M. Theillard, R. Alonso-Matilla, and D. Saintillan, Geometric
control of active collectivemotion, SoftMatter13, 363 (2017).

[24] K. Wu, J. Hishamunda, D. T. N. Chen, S. J. DeCamp, Y.
Chang, A. Fernández-Nieves, S. Fraden, and Z. Dogic,
Transition from turbulent to coherent flows in confined
three-dimensional active fluids, Science 355, eaal1979 (2017).

[25] S. Thutupalli, R. Seemann, and S. Herminghaus, Swarming
behavior of simple model squirmers, New J. Phys. 13,
073021 (2011).

[26] E. Tjhung, D. Marenduzzo, and M. Cates, Spontaneous
symmetry breaking in active droplets provides a generic route
to motility, Proc. Natl. Acad. Sci. U.S.A. 109, 12381 (2012).

[27] W. Marth, S. Praetorius, and A. Voigt, A mechanism for
cell motility by active polar gels, J. R. Soc. Interface 12,
20150161 (2015).

[28] M. Doi and S. Edwards, The Theory of Polymer Dynamics
(Oxford University Press, Oxford, 1986), Vol. 73.

[29] D. Saintillan and M. Shelley, Instabilities and Pattern
Formation in Active Particle Suspensions, Kinetic Theory,
and Continuum Simulations, Phys. Rev. Lett. 100, 178103
(2008).

[30] W.Maier andA. Saupe, Eine einfachemolekulare theorie des
nematischen kristallinflüssigen zustandes, Z. Naturforsch.
Teil A 13, 564 (1958).

[31] B. Ezhilan, M. Shelley, and D. Saintillan, Instabilities and
nonlinear dynamics of concentrated active suspensions,
Phys. Fluids 25, 070607 (2013).

PRL 119, 108002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 SEPTEMBER 2017

108002-5

https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1016/j.crhy.2013.04.001
https://doi.org/10.1146/annurev-fluid-121108-145434
https://doi.org/10.1146/annurev-fluid-121108-145434
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1038/nature11591
https://doi.org/10.1126/science.1254784
https://doi.org/10.1126/science.1254784
https://doi.org/10.1038/nmat4387
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevLett.114.048101
https://doi.org/10.1103/PhysRevE.92.062709
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1098/rsif.2011.0355
https://doi.org/10.1098/rsif.2011.0355
https://doi.org/10.1098/rsta.2014.0142
https://doi.org/10.1103/PhysRevLett.109.168105
https://doi.org/10.1103/PhysRevLett.109.168105
https://doi.org/10.1103/PhysRevLett.110.026001
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1017/jfm.2015.372
https://doi.org/10.1017/jfm.2015.372
https://doi.org/10.1103/PhysRevLett.116.048101
https://doi.org/10.1103/PhysRevLett.116.048101
https://doi.org/10.1039/C6SM01955B
https://doi.org/10.1126/science.aal1979
https://doi.org/10.1088/1367-2630/13/7/073021
https://doi.org/10.1088/1367-2630/13/7/073021
https://doi.org/10.1073/pnas.1200843109
https://doi.org/10.1098/rsif.2015.0161
https://doi.org/10.1098/rsif.2015.0161
https://doi.org/10.1103/PhysRevLett.100.178103
https://doi.org/10.1103/PhysRevLett.100.178103
https://doi.org/10.1063/1.4812822


[32] G. Jeffery, The motion of ellipsoidal particles immersed in a
viscous fluid, Proc. R. Soc. A 102, 161 (1922).

[33] C. Bingham, An antipodally symmetric distribution on the
sphere, Ann. Stat. 2, 1201 (1974).

[34] T. Gao, M. Betterton, A. Jhang, and M. Shelley, Analytical
structure, dynamics, and coarse-graining of a kinetic model
of an active fluid, Phys. Rev. Fluids (to be published).

[35] See Supplemental Material, which includes Refs. [36–43],
at http://link.aps.org/supplemental/10.1103/PhysRevLett
.119.108002 for more details of derivations and analyses.

[36] C. Hohenegger and M. Shelley, Dynamics of Complex Bio-
Fluids (Oxford University Press, Oxford, England, 2011).

[37] D. Saintillan and M. Shelley, Instabilities, pattern formation,
and mixing in active suspensions, Phys. Fluids 20, 123304
(2008).

[38] E. Hinch and L. Leal, Constitutive equations in suspension
mechanics. Part 2. Approximate forms for a suspension of
rigid particles affected by Brownian rotations, J. Fluid
Mech. 76, 187 (1976).

[39] M. Davies Wykes, J. Palacci, T. Adachi, L. Ristroph, X.
Zhong, M. Ward, J. Zhang, and M. Shelley, Dynamic self-
assembly of microscale rotors and swimmers, Soft Matter
12, 4584 (2016).

[40] C. Chaubal and L. Leal, A closure approximation for liquid-
crystalline polymer models based on parametric density
estimation, J. Rheol. 42, 177 (1998).

[41] E. Bertin, M. Droz, and G. Grégoire, Boltzmann and
hydrodynamic description for self-propelled particles, Phys.
Rev. E 74, 022101 (2006).

[42] A. Baskaran and M. C. Marchetti, Statistical mechanics and
hydrodynamics of bacterial suspensions, Proc. Natl. Acad.
Sci. U.S.A. 106, 15567 (2009).

[43] J. Feng, C. Chaubal, and L. Leal, Closure approximations
for the doi theory: Which to use in simulating complex
flows of lcps, J. Rheol. 42, 1095, 1998.

[44] S. Allen and J. Cahn, A microscopic theory for antiphase
boundary motion and its application to antiphase domain
coarsening, Acta Metall. 27, 1085 (1979).

[45] D. Anderson, G. McFadden, and A. Wheeler, Diffuse
interface methods in fluid mechanics, Annu. Rev. Fluid
Mech. 30, 139 (1998).

[46] X. Shen and P. Arratia, Undulatory Swimming in Visco-
elastic Fluids, Phys. Rev. Lett. 106, 208101 (2011).

[47] D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids,
AppliedMathematical Sciences (Springer Verlag, NewYork,
1990), Vol. 84.

[48] T. Gao, H. H. Hu, and P. Ponte Castañeda, Shape Dynamics
and Rheology of Soft Elastic Particles in a Shear Flow,
Phys. Rev. Lett. 108, 058302 (2012).

[49] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto,
Asters, Vortices, and Rotating Spirals in Active Gels of
Polar Filaments, Phys. Rev. Lett. 92, 078101 (2004).

PRL 119, 108002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 SEPTEMBER 2017

108002-6

https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1214/aos/1176342874
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108002
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108002
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108002
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108002
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108002
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.108002
https://doi.org/10.1063/1.3041776
https://doi.org/10.1063/1.3041776
https://doi.org/10.1017/S0022112076003200
https://doi.org/10.1017/S0022112076003200
https://doi.org/10.1039/C5SM03127C
https://doi.org/10.1039/C5SM03127C
https://doi.org/10.1122/1.550887
https://doi.org/10.1103/PhysRevE.74.022101
https://doi.org/10.1103/PhysRevE.74.022101
https://doi.org/10.1073/pnas.0906586106
https://doi.org/10.1073/pnas.0906586106
https://doi.org/10.1122/1.550920
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1103/PhysRevLett.106.208101
https://doi.org/10.1103/PhysRevLett.108.058302
https://doi.org/10.1103/PhysRevLett.92.078101

