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Discovered in high-energy physics, the chiral anomaly has recently made way to materials science by
virtue of Weyl semimetals (WSM). Thus far, the main efforts to probe the chiral anomaly in WSM have
concentrated on electronic phenomena. Here, we show that the chiral anomaly can have a large impact in
the A1 phonons of enantiomorphic WSM. In these materials, the chiral anomaly produces an unusual
magnetic-field-induced resonance in the effective phonon charge, which in turn leads to anomalies in the
phonon dispersion, optical reflectivity, and the Raman scattering.
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Introduction.—A major recent development in quantum
materials has been the discovery of three-dimensional
Weyl semimetals (WSM) [1]. These materials contain
Weyl nodes, i.e., topologically robust points of contact
in momentum space between two nondegenerate and
linearly dispersing electronic bands. Weyl nodes are char-
acterized by a quantum number called chirality, referring to
the parallel or antiparallel locking between momentum and
spin. WSM have their low-energy electrodynamics gov-
erned by pairs of Weyl nodes with the Hamiltonian

HW ¼ vτzσ · ð−i∇þ eAþ bτzÞ þ b0τz − eA0; ð1Þ
where v is the Fermivelocity, τz labels the twoWeyl nodes of
opposite chirality, σz labels the two degenerate states at each
node, e is the electron’s charge, Aμ ¼ ðeA0; evAÞ is the
electromagnetic potential, and bμ ¼ ðb0; vbÞ is the axial
vector describing the separation between the Weyl nodes in
energy and momentum space (b0 and b, respectively).
A key topological phenomenon in WSM is the chiral

anomaly [2], by which collinear electric and magnetic
fields (E and B) induce a transfer of electrons between
nodes of opposite chirality. This phenomenon results in an
unusual electromagnetic response [1,3,4] captured by the
Lagrangian Lax ¼ θE ·B, where θ ¼ b · r − b0t is a non-
dynamical “axion” field, at position r and time t. While the
chiral anomaly has been probed via electronic transport
experiments [5], the observed signatures are not conclusive
[6] and further probes, providing complementary under-
standing of the phenomenon, have been proposed [7–10].
These proposals rely on the development of some type of
electronic order (charge or magnetic) or nonequilibrium
electronic populations. As of now, such conditions are
unmet in real WSM.
Relative to the aforementionedproposals, lattice dynamics

is ubiquitous, occurs in equilibrium, and can be accurately
measured. Moreover, recent theories have predicted an
interplay between lattice vibrations and electronic topology
[11–15]. A natural question is then whether one might

observe fingerprints of the chiral anomaly in phonon proper-
ties. To date, phonon measurements have found no evidence
of topological effects inWSM[16], in part due to a scarcity of
concrete theoretical ideas on what to measure. The objective
of this work is to remedy that problem, predicting clear-cut
signatures of the chiral anomaly in phonon dynamics. Our
main observation is that the coupling betweenWeyl fermions
and phonons can produce fluctuations in θ, leading to
anomaly-induced infrared reflectivity, resonant Raman scat-
tering, and phonon self-energy. We predict that such effects
take place in external magnetic fields for A1 phonons of
enantiomorphicWSM (materials with broken inversion and
mirror symmetries), such as SrSi2 [17], trigonal Se and Te
[18], Ag3BO3, TlTe2O6, and Ag2Se [19].
Lattice dynamics in the absence of electrons.—The

physical properties of lattice normal modes can be
extracted from their equations of motion [20],

Mðq20 − ω2
qλÞvqλðq0Þ ¼

ffiffiffiffi
N

p
Qð0Þ

−qλ ·Eqðq0Þ: ð2Þ
Here, vqλðq0Þ is the phonon normal mode coordinate with
frequency and momenta ðq0;qÞ and branch λ ¼ 1;…; 3r
for a lattice with N sites and r atoms in the unit cell; M is
the total atomic mass in a unit cell and ωqλ is the phonon
dispersion for branch λ, in the absence of conduction
electrons and photons. The right-hand side of Eq. (2)
describes a driving force, exerted by the total electric field
Eqðq0Þ and proportional to the mode-effective phonon
charge [20,21]

Qð0Þ
qλ ¼ e

X
s

Zse−iq·tspqλs; ð3Þ

where s labels the atoms in a unit cell, ts is the position of
atom s (measured from an origin located at the unit cell),
eZs is the effective Born charge of atom s (withP

sZs ¼ 0), and pqλs is the polarization vector describing
the motion of atom s in the phonon mode λ. In the long-
wavelength limit, Eq. (3) describes the change in the
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intracell electric polarization produced by atomic displace-
ments in mode λ. The modes are classified as infrared (IR)

active if Qð0Þ
q¼0λ ≠ 0 and IR inactive otherwise. All acoustic

modes are IR inactive due to
P

sZs ¼ 0. When probing the
system with visible and IR photons, we can focus on the
physics of optical modes at small momenta, for which
ωqλ ≈ ω0;λ. As we show below, the chiral anomaly of Weyl
fermions affects Eq. (2) via a dynamical renormalization
of Qð0Þ.
Electron-phonon interaction.—The departure of the

atoms from their equilibrium positions induces a change
δUðr; tÞ in the lattice potentialUðrÞ. This couples locally to
the electronic density as Hep ¼

R
d3rψ†ðrÞψðrÞδUðr; tÞ,

where ψ† is an electron creation operator. Focusing on
electronic states in the vicinity of Weyl nodes, we have [22]

ψðrÞ≃ 1ffiffiffiffi
V

p
X
τ

eikτ ·r
X

jkj<Λ;σ
eik·ruστðrÞckστ; ð4Þ

where V is the sample volume, kτ is the position of node τ
in momentum space, uστðrÞ≡ ukτσðrÞ is the periodic part
of the Bloch wave function at node τ, k is the momentum
measured from a node, and Λ is a high-momentum cutoff
(smaller than the internode separation in k space).
Hereafter, we will be interested in long wavelength pho-
nons (jqj ≪ jkτ − kτ0 j for τ ≠ τ0), which are unable to
scatter electrons between different nodes. In this case, the
electron-phonon interaction Hamiltonian reads [23]

Hep ¼
X
kq

X
σσ0τ

�X
λ

gλσσ0;τðqÞvqλðtÞ
�
c†kστck−qσ0τ; ð5Þ

where jkj; jk − qj < Λ and

gλσσ0;τðqÞ ¼
ffiffiffiffi
N

p

V

X
s

pqλs · huστje−iq·r
∂Uðr − tsÞ

∂ts juσ0τi ð6Þ

is the electron-phonon coupling. It is useful to decompose
Eq. (6) as

gλσσ0;τ ¼ gλ00δσσ0 þ gλ
0 · σσσ0 þ τðgλ0zδσσ0 þ gλ

z · σσσ0 Þ; ð7Þ

where σ is a vector of Pauli matrices and τ ¼ �1. The
expansion coefficients are explicitly listed in the
Supplemental Material [23]. Comparing Eqs. (5) and (7)
with Eq. (1), we infer that cμðq; tÞ≡P

λðgλ00;gλ
zÞvqλðtÞ and

cμ5ðq; tÞ≡
P

λðgλ0z;gλ
0ÞvqλðtÞ behave as effective electro-

magnetic and axial-vector fields acting on electrons
(respectively). In particular, cμ5ðq≃ 0; tÞ can be interpreted
as phonon-induced fluctuations in the energy difference
and momentum separation betweenWeyl nodes of opposite
chirality.
While gλ00 is generally allowed by symmetry, gλ0z ≠ 0

requires
P

τjuστðrÞj2τ ≠ 0, which in turn demands a WSM

belonging to an enantiomorphic point group. Similarly,
gλ
z ≠ 0 requires broken time-reversal (TR), inversion and

mirror symmetries, while gλ
0 ≠ 0 requires breaking of TR

symmetry. In enantiomorphic WSM with TR symmetry,
pairs of nodes related by TR give additive contributions
to gλ0z.
Phonon dynamics in presence of Weyl fermions.—Weyl

fermions modify the phonon equations of motion by means
of an effective action

Sint ¼ −i ln det ðiγμ∂μ − γμaμ − γ5γμa5μÞ: ð8Þ

Here, γμ ¼ ðτx; iτyσÞ and γ5 ¼ τz are 4 × 4 Dirac matrices,
whereas a5μ ¼ bμ þ c5μ and aμ ¼ Aμ þ cμ are the total
axial-vector and vector fields including the phonon parts.
The inclusion of electromagnetic fields in Eq. (8) is
essential because we are interested in optical effects
produced by phonons.
To evaluate the influence of Weyl fermions in the phonon

dynamics, we expand Sint ¼ S2 þ S3 þ… in powers of aμ

and aμ5. Afterwards, we solve for δS=δvqλðq0Þ ¼ 0, where
S ¼ Sð0Þ þ Sint is the effective action for phonons and Sð0Þ
is the bare phonon action [the latter of which yields
Eq. (2)]. Explicitly,

S2 ¼
Z
q
ΠμνðqÞ½aμðqÞaνð−qÞ þ aμ5ðqÞaν5ð−qÞ�;

S3 ¼
Z
k;k0

Tαμνðk; k0ÞaμðkÞaνðk0Þaα5ð−k − k0Þ; ð9Þ

where
R
k ≡

R
d4k=ð2πÞ4 and kμ ¼ ðk0; vkÞ. The absence of

terms with an odd number of aμ is a consequence of
assuming zero chemical potential (charge conjugation
symmetry). In addition, we take zero temperature and keep
terms that are up to second order in vqλ (harmonic
approximation).
The effective Lorentz symmetry of Eq. (1), together with

gauge invariance, fixes ΠμνðqÞ ¼ ðqμqν − gμνq2ÞΠðq2Þ,
where q2 ¼ q20 − v2jqj2 and Πðq2Þ is the polarization
function [24]. Although Πðq2Þ diverges as 1= logðq2Þ
[8,25] at q2 ¼ 0 (q0 ¼ �vjqj), we find [23] that S2 does
not contribute qualitatively to the phonon dynamics, unlike
the contribution from the chiral anomaly.
The chiral anomaly emerges from S3, through the

amplitude Tμνλ associated to the “VVA triangle diagram”
[26]. This amplitude has been thoroughly studied in high-
energy physics [27], though one important caveat in our
case is that Weyl fermions and photons have different phase
velocities (v and c). Consequently, k2 ¼ ðc2 − v2Þjkj2 ≠ 0
for real photons. It is helpful to decompose Tαμν into
longitudinal and transverse parts [28],

Tαμνðk; k0Þ ¼ TðlÞ
αμνðk; k0Þ þ TðtÞ

αμνðk; k0Þ; ð10Þ
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such that qαTðlÞ
αμν ≠ 0 and qαTðtÞ

αμν ¼ 0, where q ¼ kþ k0.
The Ward identities kμTαμν ¼ k0νTαμν ¼ 0 ensure the gauge
invariance of S3. In particular, the longitudinal part reads

TðlÞ
αμνðk; k0Þ ¼ wLðq2Þqαϵμνρσkρk0σ þO½ðk2 þ k02Þ=Λ2�;

ð11Þ

where ϵμνρσ is the Levi-Civita tensor and wL ¼ −i=ð2π2q2Þ.
The infrared (1=q2) pole in wL is the essence of the chiral
anomaly. It is independent of the existence of high-energy
bands, as well as of the cutoff Λ; it depends on material
properties only through the Fermi velocity v hidden in q2.
Also, the chiral anomaly survives under perturbations that
break Lorentz invariance (such as nonzero temperature and
chemical potential, or disorder), although the q2 ¼ 0 pole
gets broadened into a resonance [29].
The transverse amplitude TðtÞ, more complicated, is

unrelated to the chiral anomaly, but does contribute to
the phonon dynamics and can cancel the 1=q2 pole of TðlÞ

in particular kinematic conditions (as when either k2 or k02
are nonzero [28]).
Nevertheless, the analysis becomes simple [23] when the

magnetic field contains a constant and uniformpartB0. In this
case, TðtÞ is nonsingular and may be neglected, while TðlÞ

changes Eq. (2) viaEq → Eqðq0Þ þEph
q andQð0Þ

qλ → Qð0Þ
qλ þ

δQqλðq0Þ. Here, Eph
q ðq0Þ ¼ ði=evÞPλðvqg00 − q0gzÞvqλ is

an effective electric field related to phonons, whereas

δQ−qλð−q0Þ ¼ i
e2V

π2ℏ2
ffiffiffiffi
N

p B0

q2
ðq0gλ0z − vq · gλ

0Þ ð12Þ

is a phonon effective charge induced by a magnetic field
and mediated by Weyl fermions. Equation (12) is the main
finding of this work. It can be reinterpreted as a phonon-
modulated topological magnetoelectric polarization: δQqλ ¼
∂2Lax=ð∂vqλ∂E−qÞ, where Lax ¼ ðθ þ δθqÞE−q · B0 and
δθq∝i

P
λðq0gλ0z−vq·gλ

0Þvqλ=q2 is a phonon-induced axion.
Magnetically induced effective phonon charges are not

unique to WSM: they also occur, e.g., in multiferroic
materials [30]. Indeed, according to group theory, phonons
that are IR inactive at B0 ¼ 0 may become IR active at
B0 ≠ 0, provided that they belong to the direct product of
axial and polar irreducible representations (irreps) [31].
What is unique about WSM is the microscopic mechanism
for the B-induced IR activity, namely, that δQ originates
from axial electron-phonon interactions ðgλ0z;gλ

0Þ and that it
contains a chiral-anomaly-induced pole at q0 ¼ �vjqj. It is
crucial that the B-field have a nonzero static and uniform
component; otherwise, the pole would get canceled by TðtÞ.
Because θ is a pseudoscalar, δθq ¼ P

λð∂θ=∂vqλÞvqλ
can be nonzero only if at least one of the modes is
pseudoscalar. Pseudoscalar phonons transform as E · B
under proper and improper rotations. Often, Weyl nodes are

located at arbitrary points in the Brillouin zone, where the
Bloch states transform according to a one dimensional irrep
of the translation subgroup. In such case [32], only phonons
that transform as the totally symmetric irrep (A1) couple to
Weyl fermions in the long wavelength limit. Moreover, for
A1 phonons to be pseudoscalar, the crystal must lack mirror
planes [31]. Hence, we predict that the main effects of the
chiral anomaly will manifest themselves in A1 phonons of
enantiomorphic WSM.
In order to assess the observability of our predictions, we

estimate δQ. In a TR-symmetric (b ¼ gλ
0 ¼ gλ

z ¼ 0) and
enantiomorphic (b0 ≠ 0 ≠ gλ0z) WSM, we have

jδQqðq0Þj
e

∼
I0
ℏq0

q20
q20 − v2q2

jB0jVc=aB
ϕ0

b0
W

; ð13Þ

where aB is the Bohr radius, I0 is a Rydberg, Vc is the unit
cell volume, ϕ0 is the quantum of flux, and W ∼OðΛÞ is a
characteristic electronic bandwith. In this estimate, we have
assumed that the spatial range of ∂tsUðr − tsÞ is about a
unit cell, that its magnitude within that range is about
I0=aB, and that

P
ττjuστj2 ≃ ðb0=WÞPτjuστj2. For

jB0j∼1T, Vc ∼ 125 Å3, I0=ðℏq0Þ ∼ 103 and b0=W ∼ 0.1,
we have jδQqðq0Þj ∼ 0.1eð1 − v2jqj2=q20Þ−1, which is not
negligible (especially close to resonance). The unusual
frequency dependence and momentum dependence of δQ
leads to new physical effects that we discuss next.
Phonon dispersion.—In the electrostatic approximation

[33], valid for cjqj ≫ q0, phonons produce longitudinal
electric fieldsEqðq0Þ≃ −ð ffiffiffiffi

N
p

=ϵeVÞq̂
P

λðQqλ · q̂Þvqλðq0Þ,
where ϵeðq; q0Þ is the electronic dielectric function for Weyl
fermions [23].
For simplicitywe consider a time-reversal invariantWSM

and assume low carrier concentrations (ωplasma ≪ ωqλ), so
that the plasmon-phonon hybridization is unimportant.
Also, as an illustration, we consider a single phonon mode:
we assume that it is IR inactive at zero magnetic field,
but that it couples axially to electrons. The A1 phonons
in SrSi2, Ag2Se, and CoSi could be candidates for such a
mode [31,34].
Inserting E, Eph, and δQ in Eq. (2), we obtain the

phonon dispersion from [23]

ω2
qA1

− q20 þ iκgA1

00q · δQqA1
ðq0Þ þ η

jq̂ · δQqA1
ðq0Þj2

ϵe
¼ 0;

ð14Þ

where κ ¼ ffiffiffiffi
N

p
=ðMeÞ and η ¼ N=ðMVÞ. The solution of

this equation is displayed in Fig. 1. When B0 · q̂ ¼ 0, the
only solution is q0 ¼ ωqA1

≃ ω0 (for long wavelength
phonons). As soon as B0 · q̂ ≠ 0, a new mode appears
due to the anomaly pole, which has quasilinear dispersion.
This mode describes particle-hole pairs propagating at the
Fermi velocity, and is the analogue of the pseudoscalar
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boson discussed in high-energy physics [29,35].
Remarkably, the linear mode couples to the optical phonon
in the vicinity of q0 ≃ vjqj, somewhat like ordinary
photons and optical phonons couple in the vicinity of
q0 ≃ cjqj. When gA1

00 ¼ 0, the gap between the optical
phonon and the pseudoscalar boson at jqj≃ ω0=v scales
as jq̂ ·B0j2=3.
Raman scattering.—One-phonon Raman scattering

arises from first order corrections to the electronic suscep-
tibility by lattice displacements [36]. The amplitude of
Raman scattering can be represented by a triangle diagram
with two photon lines and a phonon line.
Let us consider the case where no static magnetic fields

are present. In this case, the Raman scattering of a
pseudoscalar A1 phonon is directly linked to Eq. (10)
and its contribution to the Raman tensor contains an “axial”
component

Rax
jj0A1

∝ Tαμνðk; k0Þ
∂3½cα5ðqÞAμðkÞAνðk0Þ�

∂EjðkÞ∂Ej0 ðk0Þ∂vqA1
ðq0Þ

; ð15Þ

where j; j0 ∈ fx; y; zg denote the polarizations of the
incoming and scattered electric fields EðkÞ and Eðk0Þ,
respectively, k ¼ −ðω; vkÞ and k0 ¼ ðω0; vk0Þ are the
momenta of incoming and scattered photons, and q ¼
kþ k0 ¼ ðq0; vqÞ is the phonon frequency and momentum.
Equation (15) describes the contribution to the Raman
tensor coming from phonon modulations of the magneto-
electric polarizability. Because k and k0 are in the visible
[37], the 1=q2 pole in TðlÞ is canceled by TðtÞ. Yet, a weaker
singularity remains near q0 ¼ vjqj [23],

Rax
jj0A1

jq2≃0 ∝
ðq0g0z − vq · g0Þ

ðk2 − k02Þ3

×

�
k4 ln

�
k2

q2

�
− k04 ln

�
k02

q2

��
ϵjj0lðk̂0 − k̂Þl;

ð16Þ

where l ∈ fx; y; zg and ϵjj0l is the Levi-Civita tensor. Aside
from being antisymmetric under j ↔ j0, the lnðq2Þ singu-
larity in Rax

jj0λ is independent from the ultraviolet cutoff of
the theory, i.e., associated to low-energy universal proper-
ties of 3D Dirac fermions. This anomaly of the Raman
tensor appears experimentally accessible for typical optical
phonons, because the momentum q0=v≃ 5 × 105 cm−1 is
achievable in the backscattering configuration.
Infrared reflectivity.—Phonon modes with nonzero

mode-effective charge produce fluctuating dipole moments
that couple to electromagnetic fields. This coupling is
quantified by the lattice dielectric susceptibility [20].
Like above, let us consider the case of an A1 phonon that
is IR inactive at zero magnetic field, and couples to
electrons axially. This mode’s contribution to the lattice
susceptibility reads [23]

χlattjj0 ðq; q0Þ ¼
1

MVc

δQqλjδQqλj0

ω2
qλ þ iκgλ00q · δQqλ − q20

; ð17Þ

where j; j0 ∈ fx; y; zg. Thus, a constant and uniform
magnetic field will induce an IR absorption in an otherwise
IR inactive mode. In addition, the absorption spectrum
depends on q̂ ·B0. This effect can be probed in optical
reflectivity experiments [38], e.g., in the following con-
figurations: (i) non-normal incidence of light whose polari-
zation is not parallel to the sample surface, with B0 along
the normal to the surface; (ii) normal incidence of light,
whose polarization is parallel to the sample surface, with
B0 parallel to the sample surface. In optical experiments
q0 ¼ cjqj is fixed and hence the resonance of δQ at q0 ¼
vjqj is out of reach. Alternative probes (inelastic x-ray
scattering, electron energy loss spectroscopy) may allow us
to access the most interesting regime (q0 ≃ ωqλ and
jqj≃ ωqλ=v).
In conclusion, we have predicted a resonant magnetic-

field-induced phonon charge as a new fingerprint of the
chiral anomaly. This translates into a resonant Raman
scattering, a magnetic-field-induced infrared activity, and
a peculiar magnetic-field dependence of the dispersion of
A1 phonons in enantiomorphic Weyl semimetals. Although
our main results involve optical phonons, anomaly induced
effects may be present in the acoustic phonons as well. In
addition, the dynamical screening of the electron-phonon
interactions, not mentioned above, does not change our
results substantially. Further analysis of these issues will be
subject of future work.

FIG. 1. Anomaly induced coupling between an IR inactive
optical phonon and a linearly dispersing pseudoscalar boson in
presence of a static and uniform magnetic field B0, with q̂ ·B0 ¼
−1T (see Ref. [23] for plots with other values of q̂ ·B0). The
curves are solutions to Eq. (14), with parameter values taken
from Ref. [23]. When jqj ≲ ω0=v, the linear mode is doubly
degenerate but one solution is unstable (antidamped). A large
static dielectric constant is assumed so that Landau damping at
q0 > vjqj can be neglected.
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Note added.—Recently, we noticed work that overlaps with
some of our results [39].
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