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Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist
angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM)
polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA
regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between
neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism
emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-
antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in
monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism
could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.
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Magnetism in 2D electronic systems is known to present
a very different phenomenology from its three-dimensional
counterpart due to the reduced dimensionality and the
increased importance of fluctuations. Striking examples are
the impossibility of establishing long range magnetic order
in a 2D system without magnetic anisotropy [1] or the
emergence of unique finite-temperature phase transitions
that are controlled by the proliferation of topological
magnetic defects [2]. In the presence of magnetic frus-
tration, in, e.g., Kagome [3,4] or triangular lattices [5–8],
2D magnetism may also lead to the formation of remark-
able quantum spin-liquid phases [3,9,10]. The properties of
these states remain under active investigation, and have
recently been shown to develop exotic properties, such as
fractionalized excitations [11], long-range quantum entan-
glement of their ground state [12,13], topologically pro-
tected transport channels [14], or even high-TC
superconductivity upon doping [4,15,16].
The importance of 2D magnetism extends also beyond

fundamental physics into applied fields. One notable
example is data storage technologies. Recent advances in
this field are putting great pressure on the magnetic
memory industry to develop solutions that may remain
competitive in speed and data densities against new
emerging platforms. Magnetic 2D materials are thus in
demand as a possible way forward [17]. Of particular
interest for applications in general are 2D crystals and van
der Waals heterostructures. These materials have already
demonstrated a great potential for a wide variety of
applications, most notably nanoelectronics and optoelec-
tronics [18–20]. Some of them have been shown to exhibit
considerable tunability through doping, gating, stacking,
and strain. Unfortunately, very few 2D crystals have been

found to exhibit intrinsic magnetism [21,22], let alone
magnetic frustration and potential spin-liquid phases.
In this work we predict that twisted graphene bilayers

could be a notable exception, realizing a peculiar magnetism
on an effective triangular superlattice, and with exchange
interactions that may be tuned by an external electric bias.
We show that, at a mean-field level, spontaneous magneti-
zation of two different types may develop for small enough
twist angles θ ≲ 2° as a consequence of the moiré pattern in
the system. This effect is a consequence of the high local
density of states generated close to neutrality at moiré
regions with AA stacking, triggering a Stoner instability
when electrons interact. The local order is localized at AA
regions but may be either antiferromagnetic (AFM) or
ferromagnetic (FM). The two magnetic orders can be
switched electrically by applying a voltage bias between
layers. Interestingly, the relative ordering between different
AA regions in the FM ground state is predicted to be spiral,
despite the systempossessingnegligible spin-orbit coupling.
This type of magnetism combines a set of unique features:
electric tunability, magnetic frustration, the interplay of two
switchable magnetic phases with zero net magnetization,
spatial localization of magnetic moments, and an adjustable
period of themagnetic superlattice. Finally,we show that our
mean-field treatment allows us to cast the system into an
effective spin Hamiltonian that could be tackled beyond the
mean-field level to evaluate the effects of spin fluctuations.
The type of frustrated spin Hamiltonian obtained suggests
that twisted graphene bilayers should be a prime playground
for studies of spin-liquid phases. We discuss some of these
possibilities in our concluding remarks.
Description of the system.—Twisted graphene bilayers

are characterized by a relative rotation angle θ between the
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two layers [23]. The rotation produces a modulation of the
relative stacking at each point, following a moiré pattern of
period LM ≈ a0=θ at small θ, where a0 ¼ 0.24 nm is
graphene’s lattice constant [24]. The stacking smoothly
interpolates between three basic types, AA (perfect
local alignment of the two lattices), and AB or BA
(Bernal stackings related by point inversion) [25]. The
stacking modulation leads to a spatially varying coupling
between layers. This results in a remarkable electronic
reconstruction [26,27], particularly at small angles θ ≲
1°–2° [28,29], for which the interlayer coupling γ1 ∼
0.3 eV exceeds the moiré energy scale ϵM ¼ ℏvFΔK [here,
ΔK ¼ 4π=ð3LMÞ is the rotation-induced wave vector shift
between the Dirac points in the two layers, and vF ≈
106 m=s is the monolayer Fermi velocity]. It was shown
[24,29–33] that in such a regime the Fermi velocity of the
bilayer becomes strongly suppressed, and the local density
of states close to neutrality becomes dominated by quasi-
localized states in the AA regions [28]. The confinement of
these states is further enhanced by an interlayer bias Vb,
which effectively depletes the AB and BA regions due to the
opening of a local gap [34,35]. At sufficiently small angles
this was also shown to result in the formation of a network
of helical valley currents flowing along the boundaries of
depleted AB and BA regions [36].
The quasilocalized AA states form a weakly coupled

triangular superlattice of period LM, analogous to a net-
work of quantum dots. Each AA “dot” has space for eight
degenerate electrons, due to the sublattice, layer, and spin
degrees of freedom. A plot of their spatial distribution
under zero and large bias Vb ¼ 300 meV is shown in
Figs. 1(a) and 1(b), respectively. These AA states form an
almost flat band at zero energy [37], see Figs. 1(c) and 1(d),
which gives rise to a zero-energy peak in the DOS. The
small but finite width of this zero-energy AA resonance
represents the residual coupling between adjacent AA dots
due to their finite overlap. A comparison of Figs. 1(a) and
1(b) shows that a finite interlayer bias leads to a suppres-
sion of said overlap and a depletion of the intervening AB
and BA regions, as described above. The electronic
structure presented here was computed using the tight-
binding approach described in the Supplemental Material
[38], which includes a scaling approximation that allows
the accurate and efficient computation of the low-energy
band structure in low-angle twisted bilayers [compare the
solid and dashed curves in Figs 1(c) and 1(d)]. Our scaling
approach makes the problem much more tractable compu-
tationally, which is a considerable advantage when dealing
with the interaction effects, discussed below.
Moiré-induced magnetism.—It is known that in the

presence of sufficiently strong electronic interactions, a
honeycomb tight-binding lattice may develop a variety
of ground states with spontaneously broken symmetry
[42–46]. The simplest one is the lattice antiferromagnetic
phase in the honeycomb Hubbard model. The Hubbard

model is a simple description relevant to monolayer
graphene with strongly screened interactions (the screening
may arise intrinsically at high doping or, e.g., due to
a metallic environment). Above a critical value of
the Hubbard coupling, U > Uð0Þ

c ≈ 5.7 eV (value within
the mean-field), the system favors a ground state in which
the two sublattices are spin polarized antiferromagnetically.
This is known as lattice-AFM (or Néel) order.
In the absence of adsorbates [47], edges [48], vacancies

[49], or magnetic flux [50] isolated graphene monolayers,
with their vanishing density of states at low energies, are
known experimentally not to suffer any interaction-induced
magnetic instability. In contrast, Bernal (θ ¼ 0) bilayer
graphene and ABC trilayer graphene have been suggested
[51–54] to develop magnetic order, due to their finite low-
energy density of states, although some controversy
remains [55–60]. Twisted graphene bilayers at small angles
exhibit an even stronger enhancement of the low-energy
density of states associated with AA confinement and the
formation of quasiflat bands. It is thus natural to expect
some form of interaction-induced instability in this system

FIG. 1. Zero-energy local density of states in real space (a),(b),
band structure (c),(d), and density of states (e),(f) for a θ ¼ 1.5°
twisted graphene bilayer. The left column has no interlayer bias,
and the right column has a bias Vb ¼ 300 meV. This enhances
the localization of the AA quasibound states, red in (a) and (b).
The said states arise from almost flat subbands at zero energy,
which show up as large DOS peaks in (e) and (f). The solid
(dashed) lines in (c) and (d) correspond to a scaled (unscaled)
tight-binding model, see the main text.
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with realistic interactions, despite the lack of magnetism in
the monolayer [61]. By analyzing the Hubbard model in
twisted bilayers we now explore this possibility, and
describe the different magnetic orders that emerge in the
U, Vb parameter space.
We consider the Hubbard model in a low angle θ ≈ 1.5°

twisted bilayer for a moderate [62] value of U ¼ 3.7, quite

below the monolayer lattice-AFM critical interaction Uð0Þ
c .

We use a self-consistent mean-field approximation to com-
pute the system’s ground state, anduse the sameparameters of
Fig. 1. Self-consistency involves the iterative computation of
charge and spin density on the moiré supercell, integrated
over Bloch momenta, see the Supplemental Material [38] for
details. Since U is repulsive we neglect superconducting
symmetry breaking, and concentrate on arbitrary normal
solutions instead [63]. In Fig. 2 we show the resulting real-
space distribution of the ground-state spin polarizationMðr⃗Þ
of the converged solution. The top and bottom rows corre-
spond, respectively, to the lattice-FM and lattice-AFM
componentsMA þMB andMA −MB,where the polarization
density is defined as Mτ¼

P
λhn↑τλðr⃗Þ−n↓τλðr⃗Þi. Here,

τ ¼ A,B are the two sublattices and λ ¼ � are the two layers.
We obtain two distinct solutions for the magnetization,

depending on the interlayer bias Vb. At small interlayer bias
and for the chosen U ¼ 3.7 eV we see that the ferromag-
netic polarization [Fig. 2(a)] is small and collinear, and
spatially integrates to zero. Thus, the unbiased bilayer
remains nonferromagnetic in the small Vb case. However,
the lattice-AFM component of the polarization, Fig. 2(c), is
large and integrates to a nonzero value of around 0.5 electron
spins per unit cell. This is the analogue of the monolayer
lattice-AFM phase, with two important differences. On the
one hand, we find that the lattice-AFM density is strongly
concentrated at the AA regions instead of being spatially
uniform like in the monolayer. On the other hand the lattice-
AFM ground state is found to arise already for U ≳ 2 eV,
i.e., formuchweaker interactions than in themonolayer. The
reason for the reduction of Uc can be traced to the
suppression of the Fermi velocity vF at small twist angles
[29,32], which controls the critical U for the lattice-AFM
instability. The dependence of Uc and vF as a function of
angle θ is shown in Fig. 3(a). This result already points to
strong magnetic instabilities of twisted graphene bilayers as
the angle falls below the 1°–2° threshold.
Under a large electric bias between layers, the ground

state magnetization for the sameU is dramatically different,
see Figs. 2(b) and 2(d). In this case, the lattice-AFM
polarization, Fig. 2(d), is strongly suppressed and integrates
to zero spatially, while the lattice-FM component, Fig. 2(b),
becomes large around the AA regions, and integrates to a
finite value of approximately four electron spins per moiré
supercell. The AA regions are thus found to become
ferromagnetic under sufficient interlayer bias. This type
of magnetic order is the result of the increased confinement
of AA states at high Vb, and can be interpreted as an

instance of flat-band ferromagnetism driven by the Stoner
mechanism.
The lattice-AFM and lattice-FM states are also different

when comparing the relative orientations of neighboring
AA regions. By computing the total energy per supercell in
each case as a function of the polarization angle αM
between adjacent regions [Figs. 2(e) and 2(f)], we find
that the energy is minimized for αM ¼ 0° in the lattice-
AFM case (parallel alignment), but for αM ¼ 120° in the
lattice-FM case (spiralling polarization). The equilibrium

FIG. 2. Spatial distribution of the magnetic moment in the
ground state of an interacting twisted bilayer with Hubbard
U ¼ 3.7 eV. In the first row (a),(b) we show the ferromagnetic
component of the two sublattices,MA þMB, in units of electrons
per (monolayer) unit cell, both for zero interlayer bias Vb ¼ 0 (a)
and Vb ¼ 200 meV (b). Analogous plots of the lattice-AFM
component MA −MB are shown in (c) and (d). The scale in all
color bars is expressed in units of one electron spins per supercell.
Panels (e) and (f) show the variation of the total electronic energy
per supercell as a function of the angle αM between polarizations
of adjacent AA regions, indicating parallel alignment of the
lattice-AFM order (e), and a spiral misalignment of 120° for the
lattice-FM case (f).
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polarization is depicted by white arrows in Figs. 2(c) and
2(b). The depth of the energy minimum, ranging from
∼2–100 K in our simulations, represents the effective
exchange coupling of neighboring AA regions, which is
ferromagnetic for lattice-AFM states and antiferromagnetic
for lattice-FM states (see the Supplemental Material [38]
for the next-nearest neighbor exchange). In the lattice-FM
phase, which from now on we denote the spiral-FM phase,
the spiral order arises as a result of the triangular symmetry
of AA regions that frustrates a globally antiferromagnetic
AA alignment. The same spiral order has been described in
studies of the Hubbard model in the triangular lattice. It is a
rather remarkable magnetic state, as the polarization at
different points becomes noncollinear [7,64,65] despite the
complete absence of spin-orbit coupling in the system.
To better understand the onset of the spiral magnetism,

we have computed the integrated FM and AFM polariza-
tion across the U, Vb plane. We find first-order phase
transitions separating the two types of ground states. The
result is shown in Fig. 3. The regions in red and blue
denote, respectively, a finite spatial integral of the ferro
MA þMB and lattice-AFM MA −MB polarizations. It is
apparent that an electric interlayer bias of around 120 meV
is able to switch between the lattice-AFM and spiral-FM
orders for values of U between 2 and 3 eV. The precise
thresholds for such electric switching of magnetic order
depend on the specific twist angle and on other details not
considered in this work (longer-range interactions, sponta-
neous deformations, or interlayer screening), although our
simulations suggest they are likely within reach of current
experiments for sufficiently small θ.
Our mean-field analysis neglects thermal and quantum

spin fluctuations around the mean-field solution. Thermal

spin excitations in the magnetically isotropic case under
study (from gapless Goldstone modes) are expected to
destroy long-range spiral order, which then survives only
locally, in keeping with the Mermin-Wagner theorem [1].
Breaking the magnetic isotropy (by allowing for a hard
magnetic axis due to, e.g., spin-orbit coupling or coupling
to a suitable magnetic substrate) gaps the Goldstone modes
and stabilizes the mean-field solution. Otherwise, even at
zero temperature, quantum spin fluctuations are known to
produce spin-liquid-like ground states [5–8]. An efficient
way to explore such nontrivial effects in this moiré system
is to cast our mean-field results into an effective spin
Hamiltonian on the triangular AA moiré pattern, which
could be tackled using more sophisticated approaches (e.g.,
matrix-product states). The procedure is described in the
Supplemental Material [38].
Conclusion.—For a long time unmodified graphene was

thought to be relatively uninteresting from the point of view
of magnetism. Twisted graphene bilayers, however, could
prove to be a surprisingly rich playground for nontrivial
magnetic phases. We have shown that two different types of
mean-field magnetic solutions arise in twisted graphene
bilayers at small angles. The two types of magnetic order,
lattice antiferromagnetism and spiral ferromagnetism, are
both concentrated at AA-stacked regions. The spiral-FM
phase is favored over the lattice-AFM phase when applying
a sufficient electric bias between layers. This phase con-
stitutes a form of electrically controllable, noncollinear, and
spatially nonuniform magnetism in a material with a
negligible spin-orbit coupling.
This possibility is of fundamental interest, as it realizes

electrically tunable 2D magnetism on a triangular super-
lattice, a suitable platform to explore spin-liquid phases.
Indeed, it is known that next-nearest neighbor interactions
in a magnetic triangular lattice should transform spiral
order into a spin-liquid phase [5–8], as long as the system
remains magnetically isotropic. Moreover, in the spin-
liquid state, electronic doping can give rise to high TC
superconductivity [66,67]. The possibility of modifying the
electronic filling of our emergent frustrated triangular
lattice by means of an electric gate offers a unique platform
to realize this possibility, avoiding the detrimental effects of
chemical doping in conventional compounds [68]. While
the above is highly speculative at this point and would
require a careful nonperturbative analysis of our effective
spin Hamiltonian, it highlights the interesting fundamental
possibilities afforded by the rich magnetic phase diagram of
twisted graphene bilayers.
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