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We study longitudinal magnetotransport in a disordered Weyl semimetal taking into account localization
effects in the vicinity of a Weyl node exactly. In a magnetic field, a single chiral Landau level coexists with
a number of conventional nonchiral levels. Disorder scattering mixes these topologically different modes
leading to very strong localization effects. We derive the average conductance as well as the full distribution
function of transmission probabilities along the field direction. Remarkably, we find that localization of the
nonchiral modes is greatly enhanced in a strong magnetic field with the typical localization length scaling
as 1=B. Technically, we use the nonlinear sigma-model formalism with a topological term describing the
chiral states. The problem is solved exactly by mapping to an equivalent transfer matrix Hamiltonian.

DOI: 10.1103/PhysRevLett.119.106601

Introduction.—Weyl semimetals have received consid-
erable interest in the past years due to their unusual transport
properties and exotic surface states [1–13]. A Weyl semi-
metal (WSM) is a three-dimensional (3D) analog of
graphene characterized by the existence of isolated touch-
ing points between valence and conduction bands with
linear electron dispersion. Each band touching point has a
definite chirality and can be viewed as a magnetic monopole
(source or sink of Berry flux) in momentum space. The
topological nature of such Weyl points protects their linear
spectrum from gap opening and significantly alters trans-
port properties of the material compared to usual metals.
One immediate manifestation of the topological nature

of the WSM spectrum is provided by the structure of
Landau levels in an external magnetic field. Electron
motion is confined in the plane perpendicular to the field
yielding discrete energy levels

En ¼ ℏv

�
sgnn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjnBj=Φ0 þ k2x

p
; n ≠ 0;

kx; n ¼ 0:
ð1Þ

Here, v is the Fermi velocity characterizing linear
dispersion at the Weyl node andΦ0 ¼ hc=e is the magnetic
flux quantum. Each discrete level has a macroscopic
degeneracy m ¼ BA=Φ0, where A is the total sample
cross-section area. Landau level dispersion is illustrated
in Fig. 1. The topological property of the Weyl point is
manifested by a single unidirectional (chiral) level with
n ¼ 0, in addition to many nonchiral levels (n ≠ 0). A
chiral level propagating in the opposite direction belongs to
another Weyl node and is well separated in the momentum
space. This results in a very large negative magnetoresist-
ance in the direction parallel to the field [12,14–17].
Despite the number of theoretical works discussing

transport in a WSM [3,18–26], effects of disorder have
not been taken into account beyond the semiclassical weak
localization regime so far. This is justified in the absence of

magnetic field since the material is three dimensional and
localization effects are weak. For magnetotransport, the
situation is drastically different. Since Landau levels dis-
perse only along the field, electron transport is effectively
quasi-one-dimensional (1D) [25] and hence subject to
strong localization effects.
Scattering on impurities eventually localizes the nonchiral

modes of the spectrum, while the chiral level evades locali-
zation.This protected chiral Landau level is the primary source
of strong magnetoresistance. Backscattering of chiral states is
only possible when impurities couple different Weyl nodes of
opposite chirality,which occurs at parametrically larger length
scales compared to the mean free path within each node.
In this Letter, we study transport in a generic quasi-1D

system which hosts both chiral and nonchiral modes fully
taking into account localization effects. Scattering on
impurities eventually localizes the nonchiral modes, while
the chiral level evades localization. This model describes

FIG. 1. The Landau levels in the vicinity of a Weyl point in the
magnetic field B. The levels are nondispersive in the plane trans-
verse to the magnetic field. The energy-momentum dependence
along the field [Eq. (1)] is displayed. Each level has a macroscopic
degeneracym ¼ BA=Φ0. The system is effectively a quasi-1Dwire
with both chiral and nonchiral channels provided L ≫

ffiffiffiffi
A

p
.
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longitudinal magnetotransport in a WSM at finite doping
with some fixed nonzero chemical potential (cf. Fig. 1).
For a WSM sample with macroscopic length L and cross
section A, quasi-1D geometry means L ≫

ffiffiffiffi
A

p
. The surface

states are ignored since their contribution to transport is
negligible in a bulk sample [27].
We will show that, in the presence of m chiral channels,

the typical localization length for nonchiral modes is
significantly reduced, ξtyp ¼ ξ=ð1þmÞ. Here ξ ¼ σA is
the localization length the systemwould have in the absence
of chiral modes, σ is the 3D conductivity (in units e2=h per
Weyl node) given by the product of electron charge, density
of states, and diffusion constant D ¼ vl. For magnetotran-
sport in aWSMwith a macroscopic degeneracy of the chiral
Landau level m ¼ BA=Φ0 ≫ 1, the typical localization
length for nonchiral modes ξtyp ¼ σΦ0=B is independent
ofA. This effectively 1D localization effect is so strong that it
can be observed in a WSM sample of arbitrary thickness.
The enhancement of localization of the nonchiral channels
can be understood in terms of statistical level repulsion
between the transmission eigenvalues in the system, where
the presence of chiral channels with perfect transmission
suppresses transport from the remaining nonchiral ones.
Aside from magnetotransport in a WSM, a quasi-1D

wire model with chiral channels applies to a number of
other systems such as the interface between two quantum
Hall samples [28–32] and graphene zigzag nanoribbons
[33]. We obtain closed analytic expressions for the con-
ductance as a function of L, disorder strength, and number
of chiral channels taking into account localization effects
exactly. In addition, we also consider the distribution
function of transmission eigenvalues [34,35], that contains
information about shot noise and other higher moments of
full-counting statistics [35–37].
Formalism.—We consider a model of a quasi-1D wire of

length L attached to two leads withN ≫ 1 channels in total
and imbalance m (difference of right- and left-propagating
modes). Disorder mixes all channels at the scale of the
mean free path l. The full information about electron
transport is captured by the distribution function of N
transmission probabilities which we will explicitly derive.
The main technical tool we use to describe the disordered

system is the supermatrix nonlinear sigmamodel [32,38–40].
It can be derived following the conventional procedure [38–
40] starting from the effective action for the noninteracting
electrons, averagingover disorder potential, decouplingof the
fields with the help of Hubbard-Stratonovich transformation
(that introduces the matrix Q). Integrating out the original
electron fields, and performing the gradient expansion at the
saddle-point manifold yields the sigma model action [25,32]
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�
;

ξ¼Nl¼σA; Q¼T−1ΛT; Λ¼diagð1;−1ÞRA: ð2Þ

The field Q is a 4 × 4 supermatrix operating in the
product of retarded-advanced (RA) space and the Bose-
Fermi superspace (BF). The supertrace “str” is defined by
strA ¼ trABB − trAFF as in Ref. [40].
The sigma model Eq. (2) describes magnetotransport in a

WSM in the vicinity of a singleWeyl node. The effect of the
coupling between different nodes will be discussed later.
The matrix Q obeys the nonlinear constraint Q2 ¼ 1 and

can be parametrized in terms of the unitary supermatrix T as
indicated inEq. (2). ThematrixQ is invariant under thegauge
transformation T ↦ KT for any matrix K that commutes
with Λ. However, the second term of the action Eq. (2) is
written as a functional of T rather thanQ and changes by an
integral of the total derivative ðm=2Þ∂xstrðΛ lnKÞ under
such a transformation. The reason for this is that the theory
Eq. (2) describes a singleWeyl node. The gauge invariance is
restored when a Weyl node of opposite chirality is included.
It is worth noting that this second term naturally appears in
the field theory of a quantumHall edge [41] and constitutes a
1D version of the Wess-Zumino-Witten term [42–44].
In order to access transport characteristics of the system,

we apply twisted boundary conditions with the counting
field introduced by Nazarov [32,35,45]

Qð0Þ ¼Λ; QðLÞ ¼
�
cos θ̂ sin θ̂

sin θ̂ −cos θ̂

�
RA

; ð3Þ

where θ̂ ¼ diagðiθB; θFÞBF. The transmission distribution
function can be obtained from the partition function of the
sigma model as [46]

ψðθB; θFÞ ¼
Z

QðLÞ

Qð0Þ
DQe−S½Q�; ð4Þ

ρðλÞ ¼ −
2

π
Re

∂
∂θF ψðθB; θFÞ

����
iθB¼θF¼πþ2iλ−0

: ð5Þ

The function ρðλÞ is the probability density for the
Lyapunov exponent λ related to the transmission proba-
bility by T ¼ cosh−2 λ [32,35,47]. It can be used to
compute any moment of the full counting statistics. In
this work, we are particularly interested in the average
conductance per Weyl node (measured in units of e2=h)

G ¼
Z

∞

0

dλρðλÞ
cosh2λ

¼ −2
∂2

∂θ2F ψðθB; θFÞ
����
θB¼θF¼0

; ð6Þ

Transfer matrix Hamiltonian.—The path integral Eq. (4)
can be computed analytically by mapping to the equivalent
Schrödinger equation with the position x playing the role of
fictitious imaginary time [38,39,48]

ξ
∂ψ
∂x ¼ −Hψ : ð7Þ

The action Eq. (2) describes the motion of a particle on the
curved supermanifold parametrized by the matrix Q. The
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presence of chiral modes (second term of the action) results
in an effective uniform magnetic field across the manifold
with the vector potential A ¼ −ðm=2ÞstrðT−1ΛdTÞ. As a
result, the transfer matrix Hamiltonian is given by the
Laplace-Beltrami operator on the supermanifold with the
long derivatives ∂ ↦ ∂ þ A [46].
The initial conditions (at x ¼ 0) force the wave function

to be unity at Q ¼ Λ and zero everywhere else, see Eq. (3).
Such a function is invariant under rotating Q ↦ K−1QK
by any matrix K that commutes with Λ. This symmetry is
preserved by the Hamiltonian H provided that we
compensate the rotation by a gauge transformation:
T ↦ K−1TK. As a result, the Hamiltonian conserves the
angular momentum corresponding to K rotations and can
be restricted to the zero angular momentum sector:
ψðK−1QKÞ ¼ ψðQÞ at every x. Such functions are para-
metrized by just two polar angles 0 ≤ θF ≤ π and θB ≥ 0 as
in Eq. (3). The details of the parametrization and the gauge
choice can be found in Supplemental Material [46]. The
explicit effective Hamiltonian has the form

H¼−
1

J
∂

∂θF J
∂

∂θF−
1

J
∂

∂θBJ
∂

∂θBþ
m2

4
VðθB;θFÞ;

J¼ sinθF sinhθB
ðcoshθB−cosθFÞ2

; V¼ cos−2
θF
2
−cosh−2

θB
2
: ð8Þ

Eigenfunctions.—The Hamiltonian Eq. (8) can be dia-
gonalized with the help of the Sutherland transformation
~H ¼ J1=2HJ−1=2 ¼ ~HF þ ~HB which decouples the varia-
bles θB and θF [45,46,49]. The eigenvalues of ~HF form a
discrete spectrum with the lowest eigenvalue ðmþ 1Þ2=4.
The spectrum of ~HB is continuous above zero supple-
mented by a discrete set of negative eigenvalues (unless
m ¼ 0) with the lowest at −ðm − 1Þ2=4. The overall lowest
eigenvalue of ~H is 1=4 in the case m ¼ 0, otherwise it
equalsm. The analysis of the full spectrum with the explicit
form of the normalized eigenfunctions can be found in
Supplemental Material [46].
Once the eigenfunctions ϕν of the transfer matrix

Hamiltonian and the corresponding eigenvalues ϵν are
known, the solution to the time-evolution problem Eq. (7)
can be written explicitly as a spectral expansion [45,50,51]

ψðθB;θF;xÞ¼
cosmðθF=2Þ
coshmðθB=2Þ

þ
X
ν

ϕνðθB;θFÞe−ðx=ξÞϵν : ð9Þ

Here the sum over ν implies a sum over discrete levels and
an integral over the continuous part of the spectrum. The
eigenfunctions are normalized such that the initial condition
is satisfied.
The first term in Eq. (9) is the ground state of the transfer

matrix Hamiltonian H with zero eigenvalue. Its contribu-
tion to the function ψ and hence to all transport quantities
is independent of the length x. This zero eigenfunction

encodes the effect of chiral topologically protected chan-
nels and contributes me2=2h to the average conductance.
The rest of the spectrum is separated by a finite gap from
the ground state and describes the effect of the remaining
nonchiral modes. Exponential decay of the second term in
Eq. (9) signifies localization of the unprotected channels
with the gap setting the value of the corresponding
localization length ∼ξ=m.
Results.—The distribution function ρðλÞ is computed

from ψ at x ¼ L using Eq. (5). The result has the form

ρðλÞ ¼ mδðλÞ þ sinh 2λ
π

X
l∈2Nþ1þm

Z
∞

−∞
dr

lre−
L
4ξðl2þr2Þ

l2 þ r2

× sinh
π

2
ðr − imÞPð−m;0Þ

irþm−1
2

ðcosh 2λÞPð0;mÞ
l−m−1

2

ð− cosh 2λÞ:
ð10Þ

Here N ¼ 0; 1;… and Pðα;βÞ
ν ðxÞ is the Jacobi polynomial

of (possibly complex) order ν [46]. The term mδðλÞ
represents the contribution of m chiral channels with ideal
transparency.
The distribution function Eq. (10) is plotted in Fig. 2 for

several values of m and L=ξ. Qualitatively, we observe (i) a
suppression of the distribution close to λ ¼ 0 (which
corresponds to ideal transmission) and (ii) “crystallization”
of individual transmission eigenvalues in the limit L ≫ ξ
[52,53]. Both effects can be interpreted in terms of
statistical level repulsion. Different Lyapunov exponents
λ repel each other with strength proportional to L=ξ. The
presence of m eigenvalues pinned at λ ¼ 0 pushes the
remaining spectrum away from zero.
In the limit L ≫ ξ, the distribution function is a sum of

equidistant Gaussian peaks with width
ffiffiffiffiffiffiffiffi
L=ξ

p
separated

by L=ξ and having a unit weight. The position of the first
peak determines the localization length governing the
typical conductance (of nonchiral modes) Gtyp ¼ ehlnGi ∝
e−ðL=ξÞðmþ1Þ leading to ξtyp ¼ ξ=ð1þmÞ.
The average conductance per Weyl node is given by

Eq. (6) (in units of e2=h)

G¼m
2
þ

X
l∈2Nþ1þm

Z∞−im

−∞−im
dr

lrtanhπ
2
ðrþimÞ

l2þr2
e−

L
4ξðl2þr2Þ: ð11Þ

It is shown in Fig. 3 as a function of L=ξ for different
values of m. A smooth crossover from the diffusive limit
L ≪ ξ to the strongly localized regime L ≫ ξ where
current is carried only by the protected chiral channels
is clearly visible. In the latter case, the conductance is
given by

G ¼ m
2
þ

8>><
>>:

2ðπξ=LÞ3=2e−L=4ξ; m ¼ 0;

2
ffiffiffiffiffiffiffiffiffiffiffi
ξ=πL

p
e−L=ξ; m ¼ 1;

m2−1
m e−mL=ξ; m ≥ 2:

ð12Þ
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The localization length governing the decay of the average
conductance (for the nonchiral modes) is generally differ-
ent from the typical localization length [54]. Form ≠ 0, it is
significantly reduced: ξav ¼ ξ=4m.
Let us now discuss the longitudinal magnetoconductance

of a WSM sample with length L ≪ ξ ¼ σA. The magnetic
field is directly related to the parameter m ¼ BA=Φ0

(here B is the component of magnetic field in the
direction of current). A crossover from quadratic to linear
magnetoconductance occurs when B exceeds Bc ¼
2Φ0ξ=LA ¼ 2σΦ0=L. It corresponds to m ¼ ξ=L ≫ 1;

hence, discreteness of m can be disregarded. The field
Bc decreases with increasing disorder strength. In this
limit, the magnetoconductance (Fig. 4) reduces to the
semiclassical result [25,32]:

GðBÞ
Gð0Þ ¼

B
Bc

coth
B
Bc

: ð13Þ

Discussion.—In the presence of chiral channels, locali-
zation effects in the nonchiral bands are so strong that they
can be observed in a 3D WSM sample. Both the length
ξ ¼ σA and the Landau level degeneracy m ¼ BA=Φ0

scale linear with A. Hence the typical localization length
ξtyp ¼ σΦ0=B for the nonchiral modes remains finite for
arbitrary sample cross section.
In a field stronger than Bc ¼ 2σΦ0=L, all the nonchiral

modes are effectively localized and the current is carried
only by the chiral channels representing the lowest Landau
level. The value of Bc is considerably smaller than the
ultraquantum field Bu ¼ ðμ=ℏvÞ2Φ0=4π at which only the
lowest Landau level lies below the Fermi energy μ. Both Bc

and Bu scale as μ2 and their ratio is Bc=Bu ∼ l=L ≪ 1. This
implies that the ultraquantum limit for transport in a
disordered WSM occurs at much weaker fields than in
the ideal clean material. The main experimental manifes-
tation of this effect would be observing a linear longitudinal
magnetoconductance coexisting with quantum oscillations
indicating multiple Landau levels at the Fermi surface.
Our results are valid as long as scattering between

different Weyl nodes is neglected. This is the case when
the dominant scatterers are smooth on the scale of the
lattice spacing and the Weyl nodes are well-separated in
momentum space. Coupling between the Weyl nodes (e.g.
by sharp impurities) introduces a length scale li. The effect
of introducing this length scale would be replacing the
sample length L with li in our results for magnetoconduc-
tivity. In particular, Eq. (13) reproduces the quadratic B
dependence obtained from the kinetic equation treatment
[18] in the limit of small B. The transport ultraquantum
field is in this case related to the clean ultraquantum field
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FIG. 2. Transmission distribution function ρðλÞ for several
values of m and L=ξ. The presence of m chiral channels depletes
the distribution in the vicinity of λ ¼ 0. Level “crystallization”
occurs at L ≫ ξ.
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FIG. 3. Average conductance for different values of m as a
function of L=ξ (solid) and the contribution of the nonchiral
modes G − G∞ (dashed lines). For L ≪ ξ, the behavior is
metallic G ∼ ξ=L, receiving contribution from all channels.
For L ≫ ξ, the conductance is solely due to the chiral channels
and approaches me2=2h.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 4. Average magnetoconductance in the limit L ≪ ξ. A
crossover from quadratic to linear field dependence occurs
at Bc ¼ 2Φ0ξ=LA ¼ 2σΦ0=L.
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by Bc=Bu ∼ l=li which is small for sufficiently smooth
disorder [55].
Conclusion.—We have derived exact expressions for

longitudinal conductance, Eq. (11), and transmission dis-
tribution function, Eq. (10), in a Weyl semimetal subject to
an external magnetic field. The presence of the chiral
topologically protected Landau level with the macroscopic
degeneracy m ¼ BA=Φ0 leads to a very efficient localiza-
tion of the nonchiral states. An effective ultraquantum
regime, where only the chiral modes contribute to transport,
occurs at a length scale ξtyp ≈ ξ=m ¼ σΦ0=B, see Fig. 3.
Magnetoconductance changes from quadratic to linear at
the disorder-dependent scale Bc ¼ 2σΦ0=L, Fig. 4, that is
significantly smaller than the ultraquantum field for a clean
sample, Bc=Bu ∼ l=L ≪ 1. Thus the magnetic field dra-
matically enhances disorder effects.
The same results apply in general to any quasi-1D

system with broken time-reversal symmetry with a number
of chiral modes m. The transmission distribution function,
Fig. 2, interpolates between diffusive (L ≪ ξ) and strongly
localized (L ≫ ξ) limits exhibiting “crystallization” of the
Lyapunov exponents in the latter case. This effect can be
interpreted in terms of statistical level repulsion.
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