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We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure
quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath
is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization
hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the
upper bound of the velocity of information propagation in many-body quantum systems. The entanglement
entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the
information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons,
and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result
reveals a universal scenario that the second law emerges from quantum mechanics, and can be
experimentally tested by artificial isolated quantum systems such as ultracold atoms.
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Introduction.—Although themicroscopic laws of physics
do not prefer a particular direction of time, the macroscopic
world exhibits inevitable irreversibility represented by the
second law of thermodynamics. Modern research has
revealed that even a pure quantum state, described by a
single wave function, can relax to macroscopic thermal
equilibrium by a reversible unitary evolution [1–11].
Thermalization of isolated quantum systems, which is
relevant to the zeroth law of thermodynamics, is now a very
active areaof research in theory [1–6], numerics [10–16], and
experiments [17–23]. In particular, the concepts of typicality
[9,24–26] and the eigenstate thermalization hypothesis
(ETH) [10–12,27–36] have played significant roles.
However, the second law of thermodynamics, which

states that the thermodynamic entropy increases, or does
not change, in isolated systems, has not been fully
addressed in this context. We would emphasize that the
informational entropy (i.e., the von Neumann entropy) of
an isolated quantum system in a pure state never increases,
but is always zero [37]. In this sense, a fundamental gap
between the microscopic and macroscopic worlds has not
yet been bridged: How does the second law emerge from
pure quantum states?
In a rather different context, a general theory of the

second law and its connection to information has recently
been developed even out of equilibrium [38–45]. This has
revealed that information contents and thermodynamic
quantities can be treated on an equal footing, as originally
illustrated by Szilard and Landauer in the context of
Maxwell’s demon [46,47]. This research direction invokes
a crucial assumption that the heat bath is, at least in the
initial time, in the canonical distribution [48]; this special
initial condition breaks the time translation invariance and
leads to the second law of thermodynamics. The same
assumption has been employed in various modern studies

on thermodynamics, such as the nonequilibrium fluctu-
ation theorem [48–58] and the thermodynamic resource
theory [59,60].
Based on these streams of researches, in this Letter we

rigorously derive the second law of thermodynamics for
isolated quantum systems in pure states.We consider a small
system and a large heat bath, where the bath is initially in a
singleenergyeigenstate.Suchaneigenstate isapurequantum
state, anddoesnot includeanystatisticalmixtureas is thecase
for the canonical distribution. The second law that we show
here is formulated with the von Neumann entropy of the
system, ensuring the information-thermodynamics link,
which is a characteristic of our study in contrast to previous
approaches [36,61,62]. Furthermore, we prove the integral
fluctuation theorem [50,53,54,63], a universal relation in
nonequilibrium statistical mechanics, which expresses the
second law as an equality rather than an inequality.
To prove the main results (i.e., the second law and the

fluctuation theorem), our key idea is combining the
following two distinct fundamental concepts. One is
the Lieb-Robinson bound [64,65], which characterizes
the finite group velocity of information propagation in
quantum many-body systems with local interaction. The
other is the ETH, which states that even a single energy
eigenstate can behave as thermal [10–12,27–36]. In this
Letter, we newly prove a variant of the ETH [12,35],
which is referred to as the weak ETH and states that most
of the energy eigenstates satisfy the ETH, if an eigenstate
is randomly sampled from the microcanonical energy
shell. Our approach would be applicable to quite a broad
class of modern researches of thermodynamics, from
thermalization in ultracold atoms [20] to scrambling in
black holes [66–69].
Setup.—We first formulate our setup with a heat bath in a

pure state. Suppose that the entire system consists of system
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S and bath B. We assume that bath B is a quantum
many-body system on a d-dimensional hypercubic lattice
with N sites. The Hamiltonian is given by

Ĥ ¼ ĤS þ ĤI þ ĤB; ð1Þ

where ĤS and ĤB are, respectively, the Hamiltonians of
system S and bath B, and ĤI represents their interaction.
We assume that ĤB is translation invariant with local
interaction, and system S is locally in contact with bath
B [see Fig. 1(a)]. We also assume that the correlation
functions in the canonical distribution with respect to ĤB
are exponentially decaying for any local observables,
which implies that bath B is not on a critical point.
The initial state of the total system is given by

ρ̂ð0Þ ¼ ρ̂Sð0Þ ⊗ jEiihEij; ð2Þ

where ρ̂Sð0Þ is the initial density operator of system S, and
jEii is the initial energy eigenstate of bath B. We sample
jEii from the set of the energy eigenstates in the micro-
canonical energy shell in a uniformly random way, as will
be described in detail later. We can then define temperature
T of jEii as the temperature of the corresponding energy
shell. We note that the initial correlation between S and B is
assumed to be zero.
The total system then obeys a unitary time evolution

by the Hamiltonian: ρ̂ðtÞ ¼ Û ρ̂ð0ÞÛ† with Û ≔
expð−iĤt=ℏÞ. Such a situation can experimentally be
realized with ultracold atoms by quenching an external
potential at time 0. Let ρ̂SðtÞ ≔ trB½ρ̂ðtÞ� and ρ̂BðtÞ ≔
trS½ρ̂ðtÞ� be the density operators of system S and bath B
at time t, respectively. The change in the von Neumann
entropy of S is given by ΔSS ≔ SSðtÞ − SSð0Þ with
SSðtÞ ≔ −trS½ρ̂SðtÞ ln ρ̂SðtÞ�. We also define the heat emit-
ted from bath B by Q ≔ −trBfĤB½ρ̂BðtÞ − ρ̂Bð0Þ�g.
If the initial state of system S is pure [i.e.,

ρ̂Sð0Þ ¼ jψihψ j], the total system is also pure, whose
von Neumann entropy vanishes. In such a case, the final
state ρ̂ðtÞ remains in a pure state because of the unitarity,
but is entangled. Correspondingly, the final state of S is
mixed and has nonzero von Neumann entropy, which is
regarded as the entanglement entropy.

Second law.—We now discuss our first main result. If
jEii is a typical energy eigenstate that satisfies the ETH, the
second law of thermodynamics is shown to hold within a
small error,

ΔSS − βQ ≥ −ε2nd; ð3Þ

where ε2nd is a positive error term. We can rigorously prove
that ε2nd can be arbitrarily small if bath B is sufficiently
large. The error in inequality (3) decreases at least poly-
nomially in N, as will be discussed in more detail later. The
left-hand side of inequality (3) is regarded as the average
entropy production hσi ≔ ΔSS − βQ, where h� � �i describes
the ensemble average, and σ is the stochastic entropy
production that will be introduced later. We note that if the
initial state of bath B is not pure but in the canonical
distribution ρ̂canB ≔ e−βĤB=tr½e−βĤB �, inequality (3) exactly
holds without any error [48].
The second law (3) implies that the information-

thermodynamics link emerges in an isolated quantum
systems in a pure state, if we look at the informational
entropy of subsystem S, though that of the total system
remains unchanged. In this sense, inequality (3) is regarded
as a kind of Landauer principle. While the Landauer
principle and its generalizations have been derived in
various ways [38,70–75], we here showed that it can
emerge in the presence of a pure quantum bath.
We will prove inequality (3) in the Supplemental

Material in a mathematically rigorous way [76]. Here,
we only discuss the essentials of the proof, where the key
ingredients are the Lieb-Robinson bound [64,65] and the
weak ETH [12,35].
Lieb-Robinson bound.—The Lieb-Robinson bound gives

an upper bound of the velocity of information propagation,
and is applicable to any system on a generic lattice with
local interaction. To apply the Lieb-Robinson bound, we
divide bath B into B1 and B2, such that B1 is near system S
and B2 is far from S [see Fig. 1(b)]. Then, the
Lieb-Robinson bound [64,65] sets the shortest time τ at
which information about B2 reaches S across B1. We refer
to τ as the Lieb-Robinson time.
The detailed formulation of the Lieb-Robinson bound is

the following. Let ~S be the union of S and the support of ĤI .
Let Â ~S and B̂∂B1

be arbitrary operators with the supports ~S
and ∂B1, respectively, where ∂B1 is the boundary between
B1 and B2. Let distð ~S; ∂B1Þ be the spatial distance between
~S and ∂B1 on the lattice, and let j ~Sj and j∂B1j be the
numbers of the sites in ~S and ∂B1 respectively. The Lieb-
Robinson bound is formulated in terms of the operator
norm ∥ · ∥ as

∥½Â ~SðtÞ; B̂∂B1
�∥

∥Â ~S∥∥B̂∂B1
∥

≤ Cj ~Sjj∂B1je−μdistð ~S;∂B1Þðevjtj − 1Þ; ð4Þ

System S Bath B

B2B1

(a) (b)

FIG. 1. Schematics of our setup. (a) The total system, where the
initial state of B is an energy eigenstate jEii. (b) Subregions used
in our argument.
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where Â ~SðtÞ ≔ Û†Â ~SÛ represents the time evolution in the
Heisenberg picture, and C, v, μ are positive constants. In
particular, v=μ represents the velocity of information
propagation. The Lieb-Robinson time is then given
by τ ≔ μdistð ~S; ∂B1Þ=v.
Weak ETH.—We next consider the concept of the weak

ETH. Let D be the dimension of the Hilbert space of the
microcanonical energy shell of bath B, which is exponen-
tially large with respect to N, and let fjEiigDi¼1 be an
orthonormal set of the energy eigenstates of ĤB in the
energy shell. Suppose that we choose jEii from fjEiigDi¼1

in a uniformly random way. As proven in the Supplemental
Material [76], if B2 is sufficiently larger than B1, we
typically have that

trB½ÔB1
jEiihEij�≃ trB½ÔB1

ρ̂canB �; ð5Þ

which implies that jEii is indistinguishable from ρ̂canB if we
only look at any operator ÔB1

on B1 with ∥ÔB1
∥ ¼ 1. We

refer to this theorem as the weak ETH, which is a variant of
a theorem shown in Refs. [12,35]. We note that the
equivalence of the canonical and the microcanonical
ensembles for reduced density operators [85,86] plays an
important role.
We note that the weak ETH is true even if bath B is an

integrable system [31,34]. The reason why the weak ETH is
called “weak” is that there is another concept called the
“strong” ETH (or just ETH) that is believed to be true only
for nonintegrable systems, where every energy eigenstate
satisfies Eq. (5) without exception [31].
Outline of the proof of Eq. (3).—We are now in the

position to discuss the outline of the proof of the second law
(3). In the short-time regime t ≪ τ, system S cannot feel the
existence of B2, and the heat bath effectively reduces to B1.
From the weak ETH, if B2 is sufficiently larger, the initial
state jEii of bath B is typically indistinguishable from the
canonical distribution, if we only look at any operator in
B1. Thus, the reduced density operators of system S at time
t ≪ τ are almost the same for the initial energy eigenstate
and the initial canonical distribution. Therefore, the con-
ventional proof of the second law with the canonical bath
approximately applies to the present situation, leading to
inequality (3).
Integral fluctuation theorem.—We next discuss the

integral fluctuation theorem (IFT) for the case that bath
B is initially in an energy eigenstate, which is our second
main result. Let σ be the stochastic entropy production
defined as follows. Suppose that one performs projection
measurements of σ̂ðtÞ ≔ − ln ρ̂SðtÞ þ βĤB at the initial and
the final times, where the first and the second terms on the
right-hand side, respectively, represent the informational
and the energetic terms, corresponding to the first and
second terms on the left-hand side of inequality (3). Then, σ
is given by the difference between the obtained outcomes of

these measurements. The average of the stochastic entropy
production is equivalent to the aforementioned average
entropy production, hσi ¼ ΔSS − βQ.
The conventional IFT states that, if the initial state of

bath B is the canonical distribution,

he−σi ¼ 1: ð6Þ

We note that the IFT holds even when system S is far from
equilibrium. A crucial feature of the IFT is that it repro-
duces the second law hσi ≥ 0 from the Jensen inequality
he−σi ≥ e−hσi. Furthermore, the IFT can reproduce the
fluctuation-dissipation theorem [54].
Our result is the IFT in the case that bath B is initially in a

typical energy eigenstate [i.e., with initial condition (2)],

jhe−σi − 1j ≤ εFT; ð7Þ

where εFT is a positive error term. We can rigorously prove
that εFT can be arbitrarily small if bath B is sufficiently
large. The error in Eq. (7) again scales at least polynomially
inN. We note that the detailed fluctuation theorem [54] also
holds with an initial typical eigenstate, from which we can
prove the IFT as a corollary (see Supplemental Material for
details [76]).
The central idea of the proof of the IFT (7) is almost the

same as that of the second law, which is outlined above. On
the other hand, we need to make an additional assumption
to prove inequality (7) that

½ĤS þ ĤB; ĤI�≃ 0; ð8Þ

which means that the sum of the energies of S and B is
conserved at the level of fluctuations, and does not
necessarily mean that ĤI itself is small. We note that
assumption (8) is consistent with the concept of “thermal
operation” in the thermodynamic resource theory [59,60],
where the left-hand side of Eq. (8) is assumed to be exactly
zero. If the left-hand side of Eq. (8) is nonzero but small, a
small positive error term εI should be added to the right-
hand side of inequality (7), which cannot be arbitrarily
small even in the large-bath limit. However, we will
numerically show later that this additional term is negli-
gible in practice.
Estimation of the error terms.—We evaluate the error

terms in inequalities (3) and (7) with respect to the sizeN of
bath B. We set jB1j ¼ OðNαÞ, with 0 < α < 1=2. The
error from the weak ETH is bounded by
OðN−ð1−2αÞ=4þδÞ þOðN−ð1−2αÞ=8þδ=2=

ffiffiffi
~ε

p Þ, where δ > 0 is
an unimportant constant that can be arbitrarily small, and ~ε
is the fraction of atypical eigenstates in the weak ETH. The
error from the Lieb-Robinson bound is bounded by
e−μdistð ~S;∂B1Þðevt − vt − 1Þ, which is negligible compared
with the error term from theweak ETH for sufficiently large
N, but increases in time with Oðt2Þ up to t≃ 1=v.
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Numerical simulation.—We performed numerical simu-
lation of hard-core bosons with nearest-neighbor repulsion
by exact diagonalization. System S is on a single site and
bath B is on a two-dimensional lattice (see the inset of
Fig. 2). The annihilation (creation) operator of a boson at
site i is written as ĉi (ĉ

†
i ), which satisfies the commutation

relations ½ĉi; ĉj�¼ ½ĉ†i ; ĉ†j �¼ ½ĉi; ĉ†j �¼0 for i ≠ j, fĉi; ĉig ¼
fĉ†i ; ĉ†i g ¼ 0, and fĉi; ĉ†i g ¼ 1. The occupation number is
defined as n̂i ≔ ĉ†i ĉi. Let i ¼ 0 be the index of the site of
system S. The Hamiltonians in Eq. (1) are then given by

ĤS ¼ ωn̂0; ĤI ¼ −γ0
X

h0;ji
ðĉ†0ĉj þ ĉ†j ĉ0Þ; ð9Þ

ĤB ¼ ω
X

i

n̂i − γ
X

hi;ji
ðĉ†i ĉj þ ĉ†j ĉiÞ þ g

X

hi;ji
n̂in̂j; ð10Þ

where ω > 0 is the on-site potential, −γ is the hopping rate
in bath B, −γ0 is the hopping rate between system S and
bath B, and g > 0 is the repulsion energy. The initial state
of system S is given as jψi ≔ ĉ†0j0i. We set the size of bath
B by 16 ¼ 4 × 4, and the initial number of bosons in bath B
by 4. To evaluate the Lieb-Robinson time, we set
distð ~S; ∂B1Þ ¼ 1. We can then evaluate that v≃ γ and
μ ¼ 1 if g ≪ γ; therefore, the Lieb-Robinson time is given
by τ≃ γ−1. We set the inverse temperature of the initial
eigenstate as β ¼ 0.1.
Figure 2 shows the time dependence of hσi, which

implies that the second law indeed holds. The average
entropy production gradually increases up to t≃ τ, and
then saturates with some oscillations around the time
average. We note that the oscillation for γ0 ¼ 4ω is the
Rabi oscillation between system S and a part of B.
Remarkably, we observed that the second law holds even
in a much longer time regime t ≫ τ, though our theorem
ensures the second law only up to t≃ τ. This implies that

the second law is robust against bare quantum fluctuations
of pure quantum states.
We next confirmed the IFT (7). As shown in Fig. 3, he−σi

is very close to unity up to t≃ τ, as predicted by our
theorem. After t≃ τ, however, the deviation of he−σi from
unity becomes significant, which is consistent with our
theorem. This deviation comes from the effect of bare
quantum fluctuations of the initial state; if the initial state
was the canonical distribution, such deviation would never
be observed. As time increases, system S more and more
feels the effect of bare quantum fluctuations, and the
deviation becomes larger. This is regarded as a dynamical
crossover from emergent thermal fluctuations to bare
quantum fluctuations across the Lieb-Robinson time τ;
the IFT holds only for the former. Such a crossover is not
clearly observed in the second law (Fig. 2), because the
second law only concerns the average of the stochastic
entropy production, though its fluctuations play a signifi-
cant role in the IFT. Our numerical result also clarifies that
our theory indeed accounts for the validity of IFT in the
short-time regime, because the numerically observed time
scale of the breakdown of the IFT is consistent with our
theory.
As shown in the inset of Fig. 3, the error term of the IFT

is proportional to t2 up to t≃ 1=v≃ τ in our numerical
simulation. In fact, our error evaluation based on the Lieb-
Robinson bound predicts that an error term increases in
time with t2 dependence as discussed before, if the addi-
tional error term εI, which could also increase in time, is
zero [or, equivalently, the left-hand side of Eq. (8) is zero].
Therefore, our numerical result clarifies that the contribu-
tion from the left-hand side of Eq. (8) is negligible in our
setup, though it is not exactly zero in our Hamiltonians (9)
and (10).
Concluding remarks.—In this Letter, we have estab-

lished the second law (3) and the IFT (7) for unitary
dynamics in the presence of a heat bath that is initially in a
typical energy eigenstate. Our result implies that thermal
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fluctuations can emerge from quantum fluctuations in a
short-time regime, and the former crosses over to the latter
in time. Our rigorous mathematical proof is based on the
Lieb-Robinson bound (4) and the weak ETH (5). We also
performed numerical simulation of two-dimensional hard-
core bosons, and confirmed our theoretical results.
Our results can experimentally be tested with artificial

isolated quantum systems, such as ultracold atoms on an
optical lattice [87] and superconducting qubits [88].
Examining the relevance of our theory to nonartificial
complex materials in noisy open environment is a
future issue.
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