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The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be
insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination
number z. We test this scaling directly by comparing coherence properties of 87Rb gases that are driven
across the superfluid to Mott insulator transition within optical lattices of either the kagome (z ¼ 4) or
the triangular (z ¼ 6) geometries. The coherent fraction measured for atoms in the kagome lattice is lower
than for those in a triangular lattice with the same interaction and tunneling energies. A comparison of
measurements from both lattices agrees quantitatively with the scaling prediction. We also study the
response of the gas to a change in lattice geometry, and observe the dynamics as a strongly interacting
kagome-lattice gas is suddenly “hole doped” by introducing the additional sites of the triangular lattice.
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The Bose-Hubbard model describes bosons confined to a
lattice, and predicts a low-temperature phase transition
between superfluid and Mott insulating states that is driven
by on-site interactions [1]. A mean-field treatment of this
model neglects nonlocal correlations and specifies that
system properties such as particle number (n), superfluid
number (nsf ), and entropy (s) per lattice site depend on the
system’s characteristic energies—the chemical potential
(μ), on-site interaction energy (U), and thermal energy
(τ ¼ kBT)—once they are scaled by zJ, where z is the
lattice coordination number and J is the tunneling energy.
Aside from the inclusion of z, the mean-field theory is
insensitive to the lattice geometry. Treatments that consider
nonlocal correlations deviate from mean-field predictions,
particularly in low-dimensional systems [2–9].
Ultracold Bose gases trapped in optical lattices realize the

Bose-Hubbard model [10,11] and have allowed for experi-
ments that identify the zero-temperature critical point with
moderate precision by measuring either the fraction of
atoms at zero quasimomentum [12,13] or the closing of the
Higgs-mode energy gap [14] in two-dimensional (2D) square
lattices. The observed critical interaction strengths range
between the mean-field prediction and the higher value
predicted by more advanced methods [2]. However, the
interpretation of measurements is complicated by the nonzero
temperature of the gas, which is difficult to determine and
control accurately [15], and by the external harmonic confine-
ment of the gas, which causes local system properties to
vary spatially [16].
Here, we propose and pursue an alternate approach

wherein we directly test the mean-field scaling prediction
for the Bose-Hubbard model. Unlike previous tests, ours
does not require identifying the precise critical point. Our

method applies regardless of the temperature of the gas,
and remains valid even when the exact temperature is not
known. Moreover, our test is valid in the presence of
external harmonic confinement.
Our test compares bulk properties of trapped gases that are

prepared at the same total particle numberN and total entropy
S, but within optical lattices with two different coordination
numbers. Under the hypothesis that system properties are
determined locally, i.e., using both the local density and
mean-field approximations, global system properties such as
N, S, and the total superfluid population Nsf are determined
by integrating over a three-dimensional trapped sample as

F ¼ K
Z

~μ

−∞
d ~μ0

ffiffiffiffiffiffiffiffiffiffiffiffi
~μ − ~μ0

p
fð~μ0; ~U; ~τÞ; ð1Þ

where F∈fN;Nsf ;Sg, f ∈ fn; nsf; sg and the tilde indicates
an energy scaled by zJ. The effective number of occupied
lattice sites is given byK¼ðπα=vω̄3Þð2zJ=mÞ3=2, where α is
the number of equivalent sites in the unit cell, v is the unit cell
volume, m is the atomic mass, and ω̄ is the geometric mean
trapping frequency. The quantityN=K generalizes the “char-
acteristic density,” defined in Ref. [16], to nonsquare lattices.
According to the equations above, if the effective site

numbers K and the scaled interaction energies ~U are the
same for samples confined to lattices of different z and with
the same N and S, then ~μ, ~τ, and, consequently, Nsf will be
the same in the two lattices regardless of the specific
functional form of fð~μ0; ~U; ~τÞ. This prediction applies at
both zero and nonzero temperature. In contrast to previous
experiments and many numerical treatments, in our test, the
coherence properties of the Bose-Hubbbard model for
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different lattice geometries are compared not just at a
critical point, but along a line in the ~μ − ~τ plane.
We perform this test experimentally by exploring the

phase transition between the superfluid and Mott insulating
states of 87Rb atomic gases in the 2D triangular and kagome
geometries, which have coordination numbers ztri ¼ 6 and
zkag ¼ 4. While the measured data for each lattice agree
roughly with mean-field predictions, we focus instead on
testing the scaling hypothesis by comparing measurements
from both lattices over a range of ~U. Our results agree
quantitatively with the scaling prediction.
Finally, we explore the dynamic response of the quantum

gas to a change in lattice geometry. We prepare a gas in the
kagome lattice and then quench the lattice to the triangular
geometry on time scales either fast or slow compared to
the characteristic tunneling time, h=zJ. A slow quench
increases the coherent fraction, while a rapid quench, in
which the gas is suddenly “hole doped” by the addition of
vacant lattice sites, results in transient dynamics that damp
out and lead to heating.
We use an optical superlattice created by overlaying two

triangular lattices, each formed at the intersection of three
beams of light of equal intensity that intersect at equal angles
in the horizontal plane, and have in-plane polarization [17].
We use light at 532 and 1064 nm wavelengths, resulting in
latticeswith intensityminima spacedbya ¼ 355 nmand2a,
respectively. The 532-nm light, blue-detuned from the
principal atomic resonances, attracts atoms to its intensity
minima. The resulting triangular lattice potential has a depth
V532 that determines U and J, where U also depends on the
depth V⊥ of an additional vertical lattice.
A unit cell of the 1064-nm lattice contains four sites of the

532-nm lattice, labeled A–D in Fig. 1. At low intensity, the
1064-nm lattice primarily introduces energy offsets VA;B;C;D

among the four sites in the unit cell and has little influence on
U or J [18]. When the 1064-nm intensity minima coincide
with 532-nm intensity minima (sites D in Fig. 1), the
superlattice unit cell has three degenerate low-energy sites,
and one high-energy site offset by an energy ΔV ¼ VD−
VA;B;C ¼ 8=9 × V1064. When ΔV exceeds the relevant ener-
gies (μ andJ) of low-temperature atoms in thegroundbandof
the lattice, the atoms become restricted to the kagome lattice.
Our kagome-lattice data are taken with ΔV=h ¼ 13 kHz,
which satisfies the stated criteria as the chemical potential
ranges between μ=h ¼ 1.5 and 2.9 kHz. The relative position
of the commensurate lattices is measured interferometrically
and stabilized actively.
For our experiments, we prepare nearly pure 87Rb Bose-

Einstein condensates of between 0.5 and 3 × 105 atoms in
the jF ¼ 1; mF ¼ −1i hyperfine state in a red-detuned
crossed optical dipole trap, characterized by trap frequen-
cies of ðωx;ωy;ωzÞ ¼ 2π × ð34; 64; 49Þ Hz. We then
impose a one-dimensional lattice with potential depth
V⊥=h ¼ 41 kHz formed by a retro-reflected 1064-nm-
wavelength beam propagating vertically. The gas becomes

divided among ≃17 decoupled planes (with a single-atom
tunneling rate of 5 Hz).
Releasing this gas from its confinement, allowing time

of flight, and imaging in the horizontal plane reveals a
coherent fraction of around 0.5, far lower than observed
before applying the vertical lattice [20]. We ascribe this
reduction to the effect of elastic collisions between verti-
cally expanding portions of the gas that transfer momentum
incoherently into the horizontal direction, leading to an
underestimate of the coherent fraction in the lattice.
With the vertical lattice in place, we load the atoms into

the 2D superlattice with a simultaneous increase of the
superlattice beam intensities [23]. After allowing the gas to
evolve at the final lattice depths for 30 ms, we release the
atoms into a loose horizontally confining magnetic poten-
tial in which they undergo a quarter-cycle of motion before
we probe them by absorption imaging in the horizontal
plane for a momentum-space characterization of the gas
[25]. The vertical lattice is ramped off 150 μs before the
superlattice and optical traps to reduce the collisional
transfer of vertical to transverse momentum.
As shown in typical momentum-space measurements

[Fig. 2(a)], as either lattice is deepened, coherent diffraction
peaks give way to a diffuse momentum distribution that
represents both the incoherent portion of the gas and the
effects of elastic scattering during expansion. We quantify
the coherent fraction [Fig. 2(b)] by using bimodal 2D fits to
count the number of atoms in each sharp diffraction peak
above the diffuse background and dividing by the total
number of atoms in an image.
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FIG. 1. Triangular and kagome optical lattices. (a) Triangular
lattices created by light at wavelengths 532 nm (left) and 1064 nm
(right). Intensity (indicated by color saturation) minima are
separated by lattice spacings a ¼ 355 nm and 2a, respectively.
(b) Overlapping the 1064-nm intensity minima with those of the
532-nm lattice (sites D) yields a kagome lattice. (c) Potential
energy along a path between sites of the unit cell: 532-nm lattice
only (green dashed line) and bichromatic lattice (blue line).
Atoms are confined to the kagome geometry when ΔV exceeds
the chemical potential μ and the tunneling energy J.

PRL 119, 100402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 SEPTEMBER 2017

100402-2



The momentum-space images and resulting coherent
fraction measurements show the influence of lattice geom-
etry on the properties of ultracold bosons trapped within the
lattice. At all lattice depths throughout the phase transition,
the superfluid is less robust in the kagome lattice than in
the triangular lattice, as expected owing to the lower
coordination number.
Given our experimental parameters, we expect an n ¼ 2

Mott insulator to form at the center of our gas.We observe the
coherent fraction becoming negligible (below a few percent
and consistent with zero) near U=J ¼ 60 for the triangular
lattice andU=J ¼ 40 for the kagome lattice. Both values are
consistentwith themean-field prediction that the critical point
for forming the n ¼ 2 Mott insulator lies at ~U ¼ 9.9 at low
entropy. However, the trap inhomogeneity and, in particular,
our uncertainty about the entropy of the gas, which we
estimate as S=N < 0.3kB based on comparisons to numerical
calculations (see below), preclude amore precise comparison
to the predicted critical values.

However, rather than focusing on an imprecisely mea-
sured location of a critical point, our main objective is to
utilize our measurements for a precise test of the scaling
hypothesis. We emphasize again that this test remains valid
even in the absence of a precisely determined entropy for
the gas under study. For this test, we compare the coherent
fraction of atoms measured from either the triangular or
kagome lattices. We observe that scaling the experimental
U=J by z−1 leads to very good overlap between the two
data sets, within experimental error at all values of
~U (Fig. 3).
More quantitatively, we utilize the entire data set at all

values of ~U to determine the factor ζ by which theU=J axis
of the kagome-lattice data set should be scaled to best fit
the triangular-lattice data set. This is done by applying
simultaneous spline fits to the two data sets, and then
determining the value of ζ by an error-weighted least-
squares measure. We obtain ζ ¼ 1.6ð1Þ, where scaling
predicts ζ ¼ ztri=zkag ¼ 1.5.
Therefore, within its 6% estimated error, our measure-

ment supports the scaling predicted by mean-field theory.
However, our data do not necessarily disagree with beyond-
mean-field theories. Critical values of U=J for the for-
mation of both the n ¼ 1 and n ¼ 2 Mott insulators in a
zero-temperature homogeneous system have been calcu-
lated using a high-order perturbation method. These calcu-
lated critical values in the 2D triangular and kagome lattices
have the ratio 1.65, in disagreement with the scaling
prediction [27]. Yet, we cannot compare these calculations
directly to our experimental findings because they do not
account for inhomogeneity or nonzero temperature. Future
comparisons of beyond-mean-field methods to our test are
warranted.
We note three imperfections in our approach. First, for

simplicity and for technical reasons, experiments were
performed with a constant trap frequency ω̄. As a result,
the effective site number K in the two lattices differs by
the ratio Ktri=Kkag ≃ 1.4. Therefore, the triangular-lattice
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FIG. 2. Comparing the superfluid to Mott insulator transition in
lattices with different coordination numbers. (a) Momentum-
space images of atoms released from the triangular (upper row)
and kagome (lower row) lattices for V532=h ¼ 38; 54 and 78 kHz.
Diffraction of the superfluid produces sharp peaks at reciprocal
lattice vectors; those from kagome lattice show additional peaks
at wave number kkag ¼ 2π

ffiffiffi
3

p
=ð1064 nmÞ. On-site interactions in

deeper lattices drive a phase transition to the Mott insulating state,
as indicated by loss of coherence. (b) We measure coherent
fraction by summing the populations at all coherent diffraction
peaks and dividing by the total atom number. Data are shown as a
function of V532 (lower axis) and of U=J (upper axis). Each point
represents 3–5 experimental iterations and the estimated standard
error in the mean for each point is shown. See Ref. [26] for
measurements in triangular lattices at higher filling.
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FIG. 3. A test of the scaling hypothesis in which the coherent
fractions measured in the triangular and kagome lattices
[Fig. 2(b)] are plotted against the scaled interaction energy
~U ¼ U=zJ. The overlap of the two data sets at all ~U indicates
agreement with the scaling prediction.
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experiments were performed with a scaled chemical poten-
tial ~μ and temperature ~τ that were both lower than in the
kagome-lattice experiments. In the mean-field picture, data
for different K are equivalent to those from experiments
performed in the same lattice geometry, but with N and S
both scaled by K−1, i.e., at the same total entropy per
particle. We performed numerical calculations based on
nonzero temperature mean-field theory and the local
density approximation, and found that scaling both N
and S by this amount produced only few-percent changes
in the superfluid fraction for gases with small S=N as are
used in this experiment.
Second, as discussed above, the coherent fraction deter-

mined from our images is an underestimate of the super-
fluid fraction of the gas. Our test of the mean-field scaling
hypothesis is predicated on the assumption that the sys-
tematic underestimation of the coherent fraction is identical
for diffraction out of the two different lattices.
Third, the scaling hypothesis applies to a gas at thermal

equilibrium. We confirmed that the measured coherent
fractions were unchanged (at the few percent level) by
varying (by factors of 2) the times over which the lattice
depths were increased and held constant. We also per-
formed “round-trip” measurements, in which, after ramp-
ing the lattices on, we ramped off either the horizontal
lattice or both the horizontal and vertical lattices and then
measured the coherent fraction. In either case, the coherent
fraction returned to at least 90% of its value before the
lattices were ramped on. While this observation constrains
the amount by which the gas was heated by application of
either the triangular or the kagome lattice, we cannot
confirm that the gases studied are at thermal equilibrium.
We also study the evolution of a gas in response to

changes in the structure of the optical lattice while U and J
remain constant [18]. We start with a strongly interacting gas
with small coherent fraction in the kagome lattice, with
V532=h ¼ 55 kHz and ΔV=h ¼ 15 kHz, so that J=h ∼
106 Hz and U=h ∼ 1.2 kHz. Note that the entropy per
particle of this sample is higher, and thus the coherent
fraction lower, than those studied above. Next, we convert
the lattice to the triangular geometry by reducing ΔV=h
linearly in time to a minimal value of 0.5 kHz in a ramp time
Tramp. We allow the atoms to evolve for a time Thold, so that
Tramp þ Thold ¼ 15 ms is constant, before probing the gas.
Introducing the additional lattice sites of the triangular

lattice in a time that is long compared to the characteristic
time scale h=6J ∼ 1.6 ms increases the coherent fraction
to a near-constant final value (Fig. 4). That final value is
somewhat lower than that observed for a gas loaded directly
into a triangular lattice of the same depth and held for an
equal total hold time.
More rapid ramps result in a lower coherent fraction.

Through time-resolved measurements [Fig. 4(c)], we
observe that a sudden quench initiates transient dynamics
in the strongly interacting superfluid. These dynamics are

evidenced by the redistribution of population among the
coherent diffraction peaks that persist for around 200 μs
before the overall coherent fraction decays.
In this work, we made use of an optical superlattice with

tunable geometry to study the phase diagram and dynamics
of interacting Bose gases in optical lattices. By comparing
the coherence properties of gases in triangular and kagome
lattices, we tested whether the local system properties in the
different lattice geometries were related simply by a scaling
transformation that accounts only for the lattice coordination
number. Our measurements agree precisely with the scaling
prediction, placing bounds on the possible influence that
band structure effects, such as localization in the low-lying
flat band of the kagome lattice, may have on interaction-
driven localization in the Mott insulating state. We also
introduce the triangular superlattice as a tool to initiate
nonequilibrium dynamics to be studied in future work.
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FIG. 4. Response of a degenerate Bose gas to a structural lattice
change. (a) The experimental sequence. (b) Coherent fraction as a
function of ramp time after the gas equilibrates in the final lattice.
Lines show the coherent fraction observed for samples loaded
directly into and held within a constant-strength triangular or
kagome lattice; line thickness shows the estimated standard error.
(c) Time-resolved response following fastest ramp. Three one-
dimensional line cuts through momentum-space images are
summed. The coherent diffraction at wave number �kkag (shaded
red to guide the eye) is transiently enhanced as superfluid flows
into once-vacant D sites in the unit cell. First-order diffraction of
equilibrated superfluid from triangular lattice occurs at �2kkag
(shaded green).
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