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We propose that resonant inelastic x-ray scattering (RIXS) is an effective probe of the fractionalized
excitations in three-dimensional (3D) Kitaev spin liquids. While the non-spin-conserving RIXS responses
are dominated by the gauge-flux excitations and reproduce the inelastic-neutron-scattering response, the
spin-conserving (SC) RIXS response picks up the Majorana-fermion excitations and detects whether they
are gapless at Weyl points, nodal lines, or Fermi surfaces. As a signature of symmetry fractionalization, the
SC RIXS response is suppressed around the Γ point. On a technical level, we calculate the exact SC RIXS
responses of the Kitaev models on the hyperhoneycomb, stripyhoneycomb, hyperhexagon, and hyper-
octagon lattices, arguing that our main results also apply to generic 3D Kitaev spin liquids beyond these
exactly solvable models.
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Quantum spin liquids (QSLs) are exotic and entirely
quantum phases of matter [1,2] hosting a remarkable set of
emergent phenomena, including long-range entanglement,
topological ground-state degeneracy, and fractionalized
anyonic excitations. The Kitaev spin liquid (KSL) on the
honeycomb lattice [3] and its generalizations on tricoordi-
nated three-dimensional (3D) lattices [4–8] are quintessen-
tial examples of such QSL phases. Importantly, recent years
have seen much progress in identifying a large number of
candidate materials for realizing these KSL phases [9–12],
such as the honeycomb iridates Na2IrO3 [13–18] and
α-Li2IrO3 [19], the honeycomb ruthenium chloride
α-RuCl3 [20–26], and the 3D harmonic-honeycomb iri-
dates β- and γ-Li2IrO3 [27–30].
From a theoretical point of view, KSLs are particularly

appealing because each of them has an exactly solvable
limit governed by a Kitaev model [3]. In general, the
Kitaev model is defined on a tricoordinated lattice with
S ¼ 1=2 spins σx;y;zr at the sites r, which are coupled to their
neighbors via bond-dependent Ising interactions. The
Hamiltonian reads

H¼−Jx
X
hr;r0ix

σxrσ
x
r0−Jy

X
hr;r0iy

σyrσ
y
r0−Jz

X
hr;r0iz

σzrσ
z
r0 ; ð1Þ

where Jx;y;z are the coupling constants for the three types of
bonds x, y, and z. Remarkably, this model is exactly
solvable whenever there is precisely one bond of each type
around each site of the tricoordinated lattice.
These exactly solvable Kitaev models have been defined

on a wide range of tricoordinated 3D lattices [4–8],
including the hyperhoneycomb, stripyhoneycomb, hyper-
hexagon, and hyperoctagon lattices (see Fig. 1). In the
experimentally relevant isotropic regime (Jx ≈ Jy ≈ Jz), the
ground state is a gapless Z2 QSL, while the (fractionalized)

excitations are gapless Majorana fermions and gapped Z2

gauge fluxes. Importantly, the Majorana fermions (spinons)
exhibit a rich variety of nodal structures due to the different
(projective) ways symmetries can act on them [5–7].
Indeed, they are gapless along nodal lines for the hyper-
honeycomb and the stripyhoneycomb models [4], on Fermi
surfaces for the hyperoctagon model [5], and at Weyl points
for the hyperhexagon model [7].
From an experimental point of view, however, it is

difficult to identify and characterize QSLs due to the lack
of any local order parameters that could be used as
“smoking-gun” signatures. In recent years, remarkable
theoretical and experimental progress has been achieved
in understanding that fractionalization is one of the most
promising hallmarks of a QSL. Indeed, it has been
demonstrated that fractionalized excitations, which are
Majorana fermions and Z2 gauge fluxes for KSLs, can
be probed by conventional spectroscopic techniques, such
as inelastic neutron scattering (INS) [26,31–34], Raman
scattering with visible light [21,25,35–39], and resonant
inelastic x-ray scattering (RIXS) [40–42].
In this Letter, we propose that RIXS is an effective

probe of the spinon (semi)metals realized in 3D KSLs.
Calculating the exact RIXS responses of four different 3D
Kitaev models (see lattices in Fig. 1), we demonstrate that
nodal lines, Weyl points, and Fermi surfaces of Majorana
fermions leave distinct characteristic fingerprints in the
spin-conserving (SC) RIXS response. For the hyperhoney-
comb and the stripyhoneycomb models, corresponding to
β- and γ-Li2IrO3, the SC RIXS response is gapless within
particular high-symmetry planes but not at a generic point
of the Brillouin zone. In contrast, for the hyperhexagon
model, it is gapless at particular points only, while for the
hyperoctagon model, it is gapless in almost the entire
Brillouin zone. Also, the SC RIXS response is found to be
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strongly suppressed around the Γ point for all four models
as a result of symmetries acting projectively on the
Majorana fermions. We argue that our results apply to
generic KSLs and not only to the pure Kitaev models.
General RIXS formalism.—Motivated by the available

candidate materials (β- and γ-Li2IrO3), we calculate the
RIXS responses for the L3 edge of the Ir4þ ion, which is in
the 5d5 configuration [43,44]. However, our results are also
expected to be valid for other RIXS edges and for other
potential d5 candidate materials [42]. During RIXS, an
incoming photon is absorbed and excites a 2p core electron
into the 5d valence shell, which then decays back into the
2p core hole and emits an outgoing photon [45]. The low-
energy physics of the 5d valence shell at each Ir4þ ion is
governed by a J ¼ 1=2 Kramers doublet in the t2g orbitals,
and we assume that the low-energy Hamiltonian acting on
these Kramers doublets is the Kitaev Hamiltonian in
Eq. (1). In terms of the corresponding Kitaev model, the
5d6 configuration in the intermediate state is then described
as a nonmagnetic vacancy [46–49].
The initial and final states of RIXS are j0i ⊗ jQ; ϵi and

jmi ⊗ jQ0; ϵ0i, respectively, where j0i is the ground state of
the Kitaev model, jmi is a generic eigenstate with energy
Em with respect to j0i, while Q (Q0) is the momentum
and ϵ (ϵ0) is the polarization of the incoming (outgoing)
photon. During RIXS, an energy ω ¼ cfjQj − jQ0jg ¼ Em
and a momentum q ¼ Q −Q0 is transferred from the
scattered photon to the KSL. Summing over all final
states jmi, the total RIXS intensity is then Iðω;qÞ ¼P

mjAðm;qÞj2δðω − EmÞ, where Aðm;qÞ are the individual
RIXS amplitudes.
Since RIXS has four fundamental channels [42], each

RIXS amplitude takes the form Aðm;qÞ ¼ P
ηPηAηðm;qÞ,

where Pη are polarization factors depending on ϵ and ϵ0

[43], while Aηðm;qÞ are single-channel RIXS amplitudes
corresponding to the four fundamental channels. In the SC
channel labeled by η ¼ 0, the spin of the 5d valence
shell does not change during RIXS, while in the three
non-spin-conserving (NSC) channels labeled by η ¼ x, y, z,

the same spin is rotated by π around the x, y, z axes,
respectively.
The single-channel RIXS amplitudes Aηðm;qÞ are

given by the Kramers-Heisenberg formula [45]. In the
experimentally relevant fast-collision regime, where
the core-hole decay rate Γ is much larger than the
Kitaev coupling constants Jx;y;z (e.g., for the iridates,
Γ=Jx;y;z ∼ 100) [50,51], these RIXS amplitudes take the
lowest-order form [42]

Aηðm;qÞ∝
X
r

eiq·rhmjσηr
�
1−

i ~HðrÞ
Γ

�
j0i

¼
X
r

eiq·rhmjσηr
�
1−

i
Γ

X
κ¼x;y;z

JκσκrσκκðrÞ

�
j0i; ð2Þ

where ~HðrÞ ¼ H þP
κJκσ

κ
rσ

κ
κðrÞ is the Hamiltonian of the

Kitaev model with a single vacancy at site r. The spin at site
r is effectively removed from the model by being
decoupled from its neighbors at sites κðrÞ [48]. Note also
that σ0r is the identity operator and that we demand
Hj0i ¼ 0 by adding a trivial constant term to H in Eq. (1).
For the NSC channels, the RIXS amplitudes in Eq. (2)

reduce to spin-polarized INS amplitudes
P

re
iq·rhmjσx;y;zr j0i

in the limit of Γ → ∞. In the physically relevant regime, the
three NSC RIXS responses thus reproduce the respective
components of the dynamical spin structure factor studied in
Refs. [33,34]. Indeed, since the NSC channels involve flux
creation, the corresponding responses exhibit an overall flux
gap and little momentum dispersion [42].
For the SC channel, however, taking the limit of Γ → ∞

in Eq. (2) gives a trivial amplitude
P

re
iq·rhmj0i that

corresponds to a purely elastic process. The lowest-order
inelastic process is then captured by the second term in
Eq. (2), and the corresponding RIXS amplitude can be
calculated via the exact solution of the Kitaev model [3].
Furthermore, since the SC channel creates no fluxes, the
entire calculation is restricted to the ground-state flux sector
of the model.

FIG. 1. Tricoordinated 3D lattices of the Kitaev models considered in this work: (a) hyperhoneycomb, (b) stripyhoneycomb,
(c) hyperhexagon, and (d) hyperoctagon lattices. Different bond types x, y, and z are marked by red, green, and blue, respectively.
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Spinon band structures.—As a first step of our calcu-
lation, we describe the fermion (spinon) band structures of
the four Kitaev models. Using the Kitaev fermionization
σκr ¼ ibκrcr with κ ¼ x, y, z, the Hamiltonian in Eq. (1)
becomes

H ¼
X
κ

X
hr;r0iκ

iJκuκr;r0crcr0 ¼
1

2

X
r;r0

Hr;r0crcr0 ; ð3Þ

where uκr;r0 ≡ ibκrbκr0 ¼ �1 in the ground-state flux sector,
while Hr;r0 ¼ iJκuκr;r0 if r and r0 are neighboring sites
connected by a κ bond andHr;r0 ¼ 0 otherwise. It is known
that the ground state of the hyperhexagon model has a π
flux at each elementary loop [7,52], while we assume that
the ground states of the remaining three models are flux
free. This choice is consistent with numerical results for
the hyperhoneycomb and hyperoctagon models [4,7],
while it is merely a simplification for the stripyhoneycomb
model [53].
The quadratic fermion Hamiltonian in Eq. (3) can be

diagonalized via a standard procedure. Since the lattice of
each Kitaev model has n sites per unit cell (ν ¼ 1; 2;…; n),
the resulting band structure has n fermion bands
(μ ¼ 1; 2;…; n), where n ¼ 4 for the hyperhoneycomb
and hyperoctagon models, n ¼ 6 for the hyperhexagon
model, and n ¼ 8 for the stripyhoneycomb model. For a
lattice of N unit cells, the fermion with band index μ and
momentum k takes the form

ψ†
k;μ ¼

1ffiffiffiffiffiffiffi
2N

p
Xn
ν¼1

ðWkÞνμ
X
r∈ν

creik·r; ð4Þ

while the corresponding fermion energy is εk;μ ¼ 2ðEkÞμμ,
where Ĥk ¼ Wk · Ek ·W†

k is the (unitary) eigendecompo-
sition of the Hermitian matrix Ĥk with elements

ðĤkÞνν0 ¼
1

N

X
r∈ν

X
r0∈ν0

Hr;r0eik·ðr
0−rÞ: ð5Þ

Note that only the fermions ψ†
k;μ with energies εk;μ > 0 are

physical due to the particle-hole redundancy Ĥ−k ¼ −Ĥ�
k,

which implies ψ−k;μ ¼ ψ†
k;μ and ε−k;μ ¼ −εk;μ. In terms of

these fermions, the Hamiltonian in Eq. (3) is then

H ¼
X
k

Xn
μ¼1

εk;μ

�
ψ†
k;μψk;μ −

1

2

�
Θðεk;μÞ; ð6Þ

where the Heaviside step function ΘðxÞ ¼ R
x
−∞ d ~xδð ~xÞ

restricts the sum to physical fermions.
At the isotropic point (Jx;y;z ¼ J0) of each Kitaev model,

there are gapless nodes in the band structure characterized
by εk;μ ¼ 0. The structure of these nodes is determined by
how inversion and time-reversal symmetries act on the
fermions ψ†

k;μ [5–7]. If time reversal is supplemented with a

momentum shift k → kþ k0, the fermions are gapless
at Weyl points in the presence of inversion symmetry
(hyperhexagon model) and on Fermi surfaces in the
absence of inversion symmetry (hyperoctagon model). If
there is no momentum shift associated with time reversal,
the fermions are gapless along nodal lines (hyper- and
stripyhoneycomb models). For each model, the matrix Ĥk
and the band structure εk;μ are presented in Supplemental
Material (SM) [54].
SC RIXS responses.—We are now ready to calculate

the SC RIXS responses of the four Kitaev models.
Concentrating on the second term of Eq. (2) and using
the Kitaev fermionization, the lowest-order SC RIXS
amplitudes are

A0ðm;qÞ ∝
X
r;r0

eiq·rHr;r0 hmjcrcr0 j0i: ð7Þ

For the inelastic processes jmi ≠ j0i, the final state jmi
contains two fermions ψ†

k;μ and ψ†
q−k;μ0 with a total

momentum q and a total energy Em ¼ εk;μ þ εq−k;μ0.
The lowest-order SC RIXS intensity of each Kitaev model
is then

I0ðω;qÞ ∝
X
k;μ;μ0

jðAq;kÞμμ0 j2δðω − εk;μ − εq−k;μ0 Þ

× Θðεk;μÞΘðεq−k;μ0 Þ; ð8Þ
where the individual amplitudes ðAq;kÞμμ0 are derived in
SM [54] to be appropriate matrix elements of

Aq;k ¼ Ek ·W†
k ·W�

q−k −W†
k ·W�

q−k · Eq−k: ð9Þ
From a computational point of view, the intensity I0ðω;qÞ
is obtained numerically as a histogram of jðAq;kÞμμ0 j2 in
terms of the final-state energies ω ¼ εk;μ þ εq−k;μ0 .
Results and discussion.—At the isotropic point of each

Kitaev model, the lowest-order SC RIXS response I0ðω;qÞ
is plotted in Fig. 2 along a high-symmetry path [55] within
the Brillouin zone depicted in Fig. 3. For each model, the
lack of sharp dispersion curves ωðqÞ indicates the absence
of a one-fermion response, which is forbidden due to the
fractionalized nature of the fermions. Instead, the SC RIXS
response in the experimental regime is dominated by the
two-fermion response in Eq. (8), and the overall energy
dependence of each response is thus proportional to the
two-fermion joint density of states plotted in SM [54].
Since the fermion bandwidth is ≈6J0, the bandwidth of the
response is then ≈12J0.
Unlike the INS responses [33,34] or, equivalently, the

NSC RIXS responses, the SC RIXS responses in Fig. 2 are
gapless and they have a pronounced momentum depend-
ence. For each model, the low-energy (gapless) response is
determined by the nodal structure of the fermions. Since the
lowest-order SC RIXS processes create two fermions, the

PRL 119, 097202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 SEPTEMBER 2017

097202-3



corresponding response is gapless at momentum q if there
are gapless fermions at some momenta k1 and k2 such that
q ¼ k1 þ k2. For the hyperhexagon model, the fermions
are gapless at Weyl points, and the response is thus only
gapless at particular points of the Brillouin zone. For the
hyperhoneycomb and the stripyhoneycomb models, the
fermions are gapless along a nodal line within the Γ-X-Y
plane, and the response is thus gapless in most of the Γ-X-Y
plane for both models and also in most of the Z-A-T plane
for the hyperhoneycomb model. However, it is still gapped
at a generic point of the Brillouin zone between these
high-symmetry planes. For the hyperoctagon model, the
fermions are gapless on a Fermi surface, and the response is
thus gapless in most of the Brillouin zone.

For eachmodel, the SCRIXS response in Fig. 2 is strongly
suppressed around the Γ point. Indeed, since Ek ¼ −E−k is
diagonal and Wk¼W�

−k is unitary, ðW†
k ·W�

q−kÞμμ0 ¼ δμμ0

and hence Aq;k is purely diagonal for q ¼ 0. The intensity
I0ðω; 0Þ in Eq. (8) is then 0 due to the Heaviside step
functions and ε−k;μ ¼ −εk;μ. From a physical point of view,
this suppression of the intensity can be understood for each
model as a destructive interference between scattering
processes at the two sublattices of the bipartite lattice, which
in turn arises because each scattering process creates two
fermions and each fermion involves a phase factor i between
the two sublattices (see SM [54]). Remarkably, the phase
factor i indicates that the appropriate symmetry exchanging
the two sublattices [56] acts projectively on the fermions as
its action on them squares to −1 instead of þ1 [57]. The
strong suppression of the response around the Γ point is thus
a further signature of (symmetry) fractionalization.
For any actual material realizing a KSL phase, the

Hamiltonian necessarily contains additional terms with
respect to those in Eq. (1). In general, the high-energy
response is robust against such perturbations, even beyond
the phase transition into an ordered phase [26], but the
low-energy response of a generic KSL can be completely
different from that of a pure Kitaev model [58].
Nevertheless, we expect that the low-energy features of
each SC RIXS response in Fig. 2 are valid for a generic
point of the corresponding KSL phase as the low-energy
physics is still governed by gapless (dressed) fermions with
a particular nodal structure protected by the (projective)
symmetries of the system [5–7]. In particular, for
the hyperhoneycomb and the stripyhoneycomb KSLs,
the nodal line remains within the Γ-X-Y plane as long as
the twofold rotation symmetry around any z bond is intact
[59]. The suppression of the response around the Γ point is
also expected to be a robust feature of each KSL phase as it
occurs due to the particular way the symmetries fraction-
alize when acting on the fermions. In fact, it should be

FIG. 2. Lowest-order SC RIXS intensities of isotropic Kitaev
models (Jx;y;z ¼ J0) on the (a) hyperhoneycomb, (b) stripyhoney-
comb, (c) hyperhexagon, and (d) hyperoctagon lattices. In each
case, the intensity is plotted along the high-symmetry path depicted
in Fig. 3 and is normalized to be between 0 and 1. The dotted white
line indicates a gap, below which the intensity is exactly 0.
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FIG. 3. High-symmetry paths [55] within the Brillouin zones of
the (a) hyperhoneycomb, (b) stripyhoneycomb, (c) hyperhexagon,
and (d) hyperoctagon lattices.
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present for any KSL on a bipartite lattice, including the
honeycomb KSL [42].
Summary.—Calculating the exact RIXS responses of

four 3D Kitaev models, we have demonstrated that RIXS is
a sensitive probe of the fractionalized excitations in 3D
KSLs. In its NSC channels, RIXS measures the dynamical
spin structure factor, while in its SC channel, it gives a
complementary response, picking up exclusively the
Majorana fermions. By looking at where the SC RIXS
response is gapless, one can distinguish between the
various nodal structures of Majorana fermions possible
in 3D KSLs. Conversely, the suppression of the response
around the Γ point is expected to be a generic signature of
all KSLs on a bipartite lattice.
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