
Emergent 1=f Noise in Ensembles of Random Telegraph Noise Oscillators

Barry N. Costanzi*

Saint Olaf College, Northfield, Minnesota 55406, USA

E. Dan Dahlberg
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
(Received 14 March 2017; revised manuscript received 2 July 2017; published 31 August 2017)

The emergence of 1=f noise from an aggregate of 1=f2 noise signals in magnetic nanodots undergoing
random telegraph oscillations in their magnetization is reported. This emergence is found to occur with as
few as two random telegraph noise (RTN) oscillators producing 1=f noise across two decades of frequency
bandwidth, and with fewer than ten such oscillators producing 1=f noise across over four decades. The
RTN fluctuations observed are as small as one part in 10 000 compared to dc voltage signals but still
generate easily observable 1=f noise at up to 105 Hz. These observations may explain the historic difficulty
in identifying RTN oscillator sources of 1=f noise.
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Low-frequency 1=f noise is perhaps both the most
interesting, and vexing of all observed noise; its ubiquity
is well known, having been observed in systems ranging
from voltage fluctuations in electronic systems [1–3], quasar
intensities [4], neuron firing events [5], the flood levels of the
Nile river [6], various magnetic systems [7,8], and even in
music and speech [9]. Although discovered decades ago, it
continues to attract significant interest [10–12] with most
theoretical work to understand the physical mechanism(s)
behind 1=f noise focusing on semiconductor systems, with
little generality allowing extension to other systems [3]. The
most widely accepted explanation to date is van der Ziel’s
picture of a 1=f noise spectrum arising from a distribution of
activated processes producing Lorentzian spectra. He
showed mathematically that a distribution of Lorentzian
spectra, as might arise from a collection of nonidentical
random telegraph noise (RTN) oscillators, could produce a
1=f signal in the aggregate by imposing rather reasonable
restrictions on the distribution [13]. This model has signifi-
cant appeal in that it addresses the major concern of the
divergence of the power spectral density (PSD) at zero
frequency for 1=f noise [1,14]. However, despite its
mathematical appeal, an explicit, unambiguous experimental
demonstration of this emergent behavior in a physical
system with well characterized individual RTN oscillators
collectively exhibiting 1=f noise has yet to be achieved in
the over 65 years since the model’s postulation.
In this Letter, we present data exhibiting an explicit

emergence of 1=f noise from fewer than ten well-
characterized two level oscillators exhibiting RTN [15].
The RTN Lorentzian spectra, which have 1=f2 noise sig-
natures, arise from magnetization fluctuations in mesoscale
square permalloy dots. The magnetization fluctuations are
observed through resistance measurements, with the resis-
tance fluctuations due to the anisotropic magnetoresistance

(AMR) [16] of the dots. The sample geometry allows AMR
measurements on both individual dots, and on multiple dots in
series. Noise spectra with 1=f dependence are shown to
emerge in the aggregate from a small number of RTN
oscillators, demonstrating the robustness of the 1=f evolution
from 1=f2 noise; the van der Ziel explanation is formulated
for a continuum of Lorentzian signals, but our measurements
show that 1=f signals can emerge over many decades of
frequency space for fewer than ten constituent Lorentzians,
and two decades of 1=f noise was observed for only two dots
exhibiting RTN. We also note the size of the individual RTN
voltage signal necessary to generate 1=f noise in our systems
is quite small compared to the total sample dc voltage; RTN
amplitudes on the order of 10−4 the dc voltage signal generate
easily measurable 1=f noise over several decades of fre-
quency space at frequencies up to 105 Hz. Both the few RTN
oscillators needed and the low signal magnitude from each
give a possible explanation on why it has been difficult
determining the source of 1=f noise in the vast majority of
systems.
We also examine the range of energy barriers the van der

Ziel model would predict necessary to generate 1=f noise,
and compare it to our experimentally determined barrier
height distribution for the individual dots [17]. There have
been numerous studies of RTN and 1=f noise in semi-
conductors and in magnetic tunnel junctions [1,18,19], as
well as observation of both 1=f and RTN in other systems
[20], but an unambiguous quantification of the individual,
discrete RTN signals leading to the 1=f noise spectrum has
not yet been explicitly demonstrated.
In what follows, we describe the fabrication process of

the magnetic dot samples measured in this work, followed
by our experimental methods used to measure the fluctuat-
ing magnetization of both single dots and collections of
dots. Next we present data showing aggregate 1=f noise
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arising from collections of single dot RTN signals before
applying a statistical analysis of multiple samples to
compare to the van der Ziel model. Finally, we discuss
the ramifications of our results in the broader context of
1=f noise in general.
Data from this work were acquired from 10 samples,

with a given sample consisting of between 2 to 81 dots.
The samples were fabricated on Si3N4 coated Si substrates,
patterned through a two-step liftoff process. Arrays of
250 nm square dots with 1 μm center-to-center spacing
were patterned into single-layer resist using electron beam
lithography at 100 keV using a Vistec EBPG 5000þ
system. Following development of the resist, a 3 nm seed
layer of Ta, a 10 nm layer of permalloy (Py) (Ni80Fe20), and
a 3 nm capping layer of Ru were deposited by dc sputtering
under zero applied magnetic field. After liftoff, substrates
were placed on a rotating stage, and a short ion mill step at a
steep angle (75°) to the substrate normal was performed to
remove fencing from the dots that could cause unwanted
shape anisotropy energy. Finally, nonmagnetic contacts
consisting of a 5 nmW=15 nm Au bilayer were patterned
by a similar process. The final sample geometry is shown in
the inset in Fig. 1(a) with larger collections of dots made by
daisy chaining up to 9 of the 9 dot samples.
The magnetization fluctuations of the dots were

observed through resistance measurements, with resistance
values corresponding to the net magnetization direction
through the AMR. The resistance is related to the mag-
netization direction by

RðθÞ ¼ R⊥ þ ðR∥ − R⊥Þ cos2 θ; ð1Þ

where θ is the angle between the magnetization and the
current, and R⊥ðR∥Þ is the resistance when the current and
magnetization are perpendicular (collinear) [16]. We define
the current to be in the positive x direction, so θ may be
interpreted simply as the direction of the net magnetization.
As seen in the Fig. 1 inset, for current contacts at the ends of a
chain, a judicious choice of voltage contacts allows a four-
terminal resistance measurement [21] on any individual dot,
or any collection of adjacent dots. To measure the fluctua-
tions, a dc current of ∼300 μA was supplied by a battery
powered source. The resulting voltages were amplified by a
Stanford Instruments SR560 preamp before being measured
by both a Tektronix DPO4012b oscilloscope to record time
records, and by a Hewlett-Packard 35670A spectrum ana-
lyzer to record noise PSD. The preampwas ac coupled using
a discrete passive filter at a roll-off frequency of 0.5 Hz to
block the large dc voltage component, while still remaining
sensitive to jumps in the magnetization, which would be
manifest as jumps in resistance, as per Eq. (1).
For the dots discussed here, their configurational

anisotropy energies [22,23] are similar to those previously
reported by Endean et al. [17], with the easy axes of the
magnetization perpendicular to the sides of the square dots.

The center-to-center spacing of 1 μm is sufficient to ensure
that adjacent dots do not couple either magnetostatically, or
through spin-torque when a current is applied. Using the
configurational anisotropy model developed by Endean
et al. [17], and relying on the Stoner-Wolfharth model [24],
the energy landscape EðθÞ is a function of both the
configurational anisotropy and the applied field Zeeman
energy, and in the simplest case is given by

EðθÞ ¼ −
EA

2
cosð4θÞ −mH cosðθ − ϕÞ; ð2Þ

where EA is the height of the configurational anisotropy
barrier, m is the magnetization of the dot, H is the applied

FIG. 1. PSD and voltage vs time data for two dots undergoing
RTN for an applied field of 3.5 mT along the dot diagonal. The
individual dots show clear RTN in (b) and (c), with the expected
Lorentzian PSDs in (a). The aggregate time record (d) has the
black PSD shown in (a). The fitted line has a slope of −1.24,
within the accepted definition of 1=f noise [1,3]. The inset shows
a schematic of the sample geometry; square dots (dark red) are
electrically connected together by gold contacts (light green)
entering the frame from the edges. By attaching the current leads
shown, any other pair of contacts can be chosen as voltage leads
to perform a 4-terminal resistance measurement across any
combination of adjacent dots. The magnetization angle θ of a
given dot and the applied field angle ϕ are both defined as shown.
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field magnitude, ϕ is the field direction, and θ is the
magnetization direction, with both angles measured relative
to the x axis. For our dots with no applied field the height of
the barrier along the dot diagonal, ΔE ¼ Eðπ=4Þ−
Eð0Þ ¼ EA, is large enough (several eV) to make any
transition probability between two adjacent states (e.g.,
between θ ¼ 0 and θ ¼ ðπ=2Þ) vanishingly small at room
temperature.
The application of a magnetic field along the dot

diagonal (θ ¼ ðπ=4Þ) lowers the energy barrier along the
diagonal allowing the barrier to be made comparable to the
thermal energy. In this case, the dwell time for a given state,
τd, will be on experimental time scales [15]. This activated
switching can be described by an Arrhenius law [13],

τd ¼ τ0eΔE=kBT; ð3Þ

where τ0 is an attempt time, kB is the Boltzmann constant,
T is the temperature, and ΔE is the height of the magnetic
field controlled energy barrier [25]. These fluctuations or
random switchings between these two states are well
known as RTN [26,27]. A single RTN signal with a
symmetric energy barrier exhibits a PSD SVðfÞ with a
Lorentzian frequency dependence

SVðfÞ ¼
ΔV2

2

τd
1þ ðπτdfÞ2

; ð4Þ

where ΔV is the measured voltage difference between the
two states, and τd is the average dwell time for either energy
well [27], as in Eq. (3). The Lorentzian line shape is easily
identified by its frequency independent region below τ−1d ,
and a 1=f2 dependence at frequencies far above τ−1d .
Because of slight variations of identically fabricated

dots, their energy landscapes will vary, leading to a
distribution of anisotropy energy values EA in Eq. (2).
Since the average dwell time τd depends exponentially on
the height of the barrierΔE as in Eq. (3), even a small range
of EA ’s will give a very large spread of τd ’s across dots for
the same applied field.
An example of RTN signals in both the time and

frequency domains for two different dots both individually
and collectively are shown in Fig. 1. The dots have different
energy landscapes at the same applied field, leading to two
separate Lorentzians with different τd’s. We note that,
despite the two dots each exhibiting Lorentzian PSDs, at
this particular applied field the aggregate PSD shows an
approximate 1=f dependence over 2 decades of frequency.
A signal extending across the full range of our frequency

measurement, about 4 decades, can be generated by
chaining more dots together as shown in Fig. 2. This
figure shows data from four different chains of nine dots,
measured as both individual chains, and together in series.
From the time records shown in Figs. 2(c)–2(f), we note
that only six RTN signals compose the aggregate 1=f

signal covering four decades of frequency, with the single-
chain data shown in Figs. 2(d) and 2(f) each showing single
RTN signals, and that from Figs. 2(c) and 2(e) showing two
RTN signals each.
The emergence of 1=f noise from an aggregate of

Lorentzian signals was postulated by van der Ziel [13]
by assuming a constant or flat distribution of activated
processes with characteristic times τd [28]. He showed the
PSD of those systems in aggregate will assume a 1=f
dependence. Further, the range of ΔE’s over which the
distribution condition must be met can be relatively small
and still produce a 1=f signal over many decades of
frequency space, given Eq. (3)’s exponential dependence
on ΔE. We note the requirement that the distribution of

FIG. 2. PSD and voltage vs time data for four chains of nine
dots, and the four chains in series, with an applied field of 3.5 mT
along the dot diagonal. The composite PSD is shown in (a) with a
fit line showing a slope of −1.1, and the corresponding time
record is shown in (b). Time records (c)–(f) all show clear RTN
signals, with (d) and (f) showing one RTN signal in the chain, and
(c) and (e) showing two. We note that the slow voltage drifts in
(f) such as the one seen between t ¼ 18 and t ¼ 26 ms are
artifacts of the hi-pass filter on the measurement, which are
visible over these long time scales. The roll-off frequency is over
an order of magnitude lower than the lower frequency limit in (b).
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energy barriers be flat can be relaxed to any slowly varying
distribution [3,29] but for simplicity we proceed with the
more restrictive flat distribution requirement.
Average dwell times in the range 10−6 s < τd < 1 s

produce the 1=f signal shown in Fig. 2(a) over the
frequency range 10 Hz < f < 105 Hz [13]. Assuming an
attempt time of τ0 ¼ 10−11 s [30] and taking T ¼ 293 K,
inverting Eq. (3) for both dwell time extremes gives a range
of 0.25 eV ≤ ΔE ≤ 0.63 eV, where the energy barrier
distribution must be constant. We suppose that we observe
1=f in a chain of dots at an applied field of magnitude HN
and angle ϕ ¼ ðπ=4Þ. Assuming that the magnetization in a
given dot is jumping between approximately 0 and π=2 and
that all dots have the same magnitude of magnetization, the
second term in Eq. (2) becomes a constant, and so we
require only a constant distribution of EA’s between dots.
The configurational anisotropy energy, jEAj of one of our

dots, with a magnetization m, can be determined as in
Ref. [17] by straightforward measurement of easy-axis
coercivities Hc through the relationship

jEAj ¼
mHc

8
: ð5Þ

A histogram of coercivity values measured in ∼150
individual dots is shown in Fig. 3, displaying a relatively
flat distribution of coercivities between 6.8 and 12.0 mT.
To determine whether this region would predict the 1=f
noise we see in our samples, we first combine Eqs. (2), (3),
and (5) to find the noise field value that corresponds to RTN
switching at a given dwell time τd for a dot with easy axis
coercivity, HC, for a field applied at an angle of π=4:

HN ¼ 2kBT

ð2 − ffiffiffi

2
p Þm ln

τ0
τd

þ HC

8 − 4
ffiffiffi

2
p : ð6Þ

Using the established value of 8 × 105 A=m for the
magnetization of Py [31] and the dwell time limits
mentioned above, our model predicts 1=f noise for applied
fields between 2.8 and 4.5 mT. Figure 3(b) shows a
histogram of field magnitudes at which 1=f noise has
been observed at an applied field angle of π=4, which
shows agreement with our predicted field regime.
Our results have several consequences for our under-

standing of 1=f noise in general. For a system exhibiting
1=f noise where specific RTN oscillators are not known,
identifying individual RTN oscillators in time record
measurements may be the exception rather than the rule.
This explains why identifying the sources of 1=f noise has
been so difficult. As we have shown, in a macroscopic
sample displaying a 1=f spectrum there can be as few as
one RTN oscillator per decade of frequency explored and
thus the specific RTN oscillators can be extremely rare.
To make this point more strongly, the largest 1=f PSD
frequency range explored to date is slightly more than six
decades [32,33]. For this range as few as six or seven RTN
oscillators could in principle explain the observations [34].
This is compounded by the small signal size associated
with the individual RTN oscillators. In our case the
individual voltage differences between the RTN states
(after gain removal) is approximately 50 μV, compared
to the total voltage drop across a chain which is ≈1.5 V.
Thus, for a typical voltage measurement like ours, very
small (on the order of one part in 10 000) voltage fluctua-
tions of a few RTN oscillators can result in a 1=f spectrum
which is observable at high frequencies (up to 105 Hz in
our experiments), contingent on the noise floor of the
measurement, of course; in general, this greatly compli-
cates identifying the RTN oscillators in other systems. Last,
the evolution of 1=f noise from RTN oscillators removes
the zero frequency divergence in the power spectrum as the
RTN spectrum becomes flat at low frequencies [1].
In summary, we have demonstrated the emergence of

1=f noise from discrete RTN signals in collections of
magnetic dots. The overall statistics of the dot energies
agree with the van der Ziel picture of 1=f noise, but for any
given collection of dots exhibiting 1=f noise, the number of
RTN signals comprising the signal is fewer than 10,
showing that this effect is more robust than the original
picture would indicate. We also find both the signal size of
an individual RTN oscillator and the number of RTN
oscillators necessary to produce 1=f noise make it very
difficult to identify the relevant RTN oscillators that might
constitute any given 1=f signal.
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