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We provide an experimental framework where periodically driven P7 -symmetric systems can be
investigated. The setup, consisting of two ultra high frequency oscillators coupled by a time-dependent
capacitance, demonstrates a cascade of P7 -symmetric broken domains bounded by exceptional point
degeneracies. These domains are analyzed and understood using an equivalent Floquet frequency lattice
with local P7 symmetry. Management of these P7 -phase transition domains is achieved through the

amplitude and frequency of the drive.
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Introduction.—Non-Hermitian Hamiltonians H which
commute with the parity-time (P7) symmetry operator
might have a real spectrum when some parameter y,
controlling the degree of non-Hermiticity, is below a critical
value yp7 [1]. In this parameter domain, termed the exact
‘PT phase, the eigenfunctions of H are also eigenfunctions
of the P7 operator. In the opposite limit, coined the broken
‘PT phase, the spectrum consists (partially or completely) of
pairs of complex conjugate eigenvalues while the eigen-
functions cease to be eigenfunctions of the P7 operator.
The transition point y = yp7y shows all the features of an
exceptional point (EP) singularity where both eigenfunctions
and eigenvalues coalesce. Its existence played a prominent
role in many P7 studies ranging from optics [2—18], matter
waves [19,20] and magnonics [21,22] to acoustics [23-25]
and electronics [26-28]. Subsequent experimental demon-
strations [4,9,10,12-14,17,18,24-26,29] revealed the viabil-
ity and technological impact of many of these studies.

Though the exploitation of P7 -symmetric systems has
been prolific, most of the attention has been devoted to
static (i.e., time-independent) potentials. Recently, how-
ever, a parallel activity associated with time-dependent
PT -symmetric systems has started to attract increasing
attention [30—40]. The excitement for this line of research
stems from two reasons: the first is fundamental and
associated with the expectation that new pathways in
the P7 arena can lead to new exciting phenomena. This
expectation is further supported by the fact that the
investigation of time-dependent Hermitian counterparts
led to a plethora of novel phenomena—examples include
Rabi oscillations [41], Autler-Townes splitting [42],
dynamical localization [43], dynamical Anderson localiza-
tion [44], and coherent destruction of tunneling [45,46] (for
areview see Ref. [47]). The second reason is technological
and it is associated with the possibility to use driving
schemes as a flexible experimental knob to realize
new forms of reconfigurable synthetic matter [48,49].
Specifically, in the case of P7-symmetric systems one
hopes that the use of periodic driving schemes can allow for
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management of the spontaneous P7 -symmetry breaking
for arbitrary values of the gain and loss parameter. The
basic idea behind this is that periodic driving can lead to a
renormalization of the coupling and a consequent tailoring
of the position of the EPs. Unfortunately, while there is a
number of theoretical studies [31,34,36,39] advocating for
this scenario, there is no experimental realization of a time-
dependent P7 -symmetric setup (See Note added.).

Here we provide such an experimental platform where
periodically driven P7 -symmetric systems can be inves-
tigated. Our setup [see Figs. 1(a) and 1(b)] consists of
two coupled LC resonators with balanced gain and loss.
The capacitance that couples the two resonators is para-
metrically driven with a network of varactor diodes.
We find that this driven P7 system supports a sequence
of spontaneous P7 -symmetry broken domains bounded by
exceptional point degeneracies. The latter are analyzed and
understood theoretically using an equivalent Floquet fre-
quency lattice with local P7 symmetry. The position and
size of these instability islands can be controlled through
the amplitude and frequency of the driving and can be
achieved, in principle, for arbitrary values of the gain or
loss parameter.

Experimental setup.—A natural frequency of w/2x =
235 MHz was chosen as the highest frequency convenient
for a simple implementation of electronic gain and loss.
The L =32 nH inductors of Fig. 1(a) are two-turns of
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FIG. 1. (a) Experimental P7 circuit with tuning and modula-
tion control. (b) Signal control and analysis system.
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FIG. 2. Spectral density plots for

Re(w) of the RLC dimer of Fig. 1,
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1.5 mm diameter Cu wire with their hot ends supported by
their corresponding parallel C = 15 pF on opposite sides
of a grounded partition separating gain and loss compart-
ments. Gain and loss (corresponding to effective parallel
resistances F R) are directly implemented via Perkin-
Elmer VOON3 photocells connecting the center turn of
each inductor either directly to ground (loss side) or to a
BF998 MOSEFET following the LC node (gain side).
Thus as both photocells experience the same voltage drop,
the loss side photocell extracts its current from the tap point
while the gain side photocell injects its current into the tap
point. The photocells are coupled to computer driven LEDs
through 1 cm light pipes for RF isolation. As the gain of
the MOSFET is changed, its capacitance shifts slightly,
unbalancing the resonators. A BB135 varactor is used to
compensate for these changes.

The capacitance coupling network, implemented by
similar varactors, is optimized for application of a modu-
lation frequency in the vicinity of 4.6 MHz while simulta-
neously providing the dc bias necessary for controlling the
inter-resonator coupling C..

Figure 1(b) shows the remainder of the signal acquisition
setup. The excitation in each resonator is sensed by a small
pickup loop attached to the input of a Minicircuits ZPL-1000
low noise amplifier. The gain and loss pick-up channels are
then hetrodyned to =30 MHz before being captured by a
Tektronix DPO2014 oscilloscope.

the position of the arrows.

0.02

0.03

The experimental unmodulated P7 diagram, shown
with the color map in Fig. 2(a), is matched to the theoretical
results in order to calibrate both the resonator frequency
balance and the gain or loss balance. The coupling is then
modulated, directly comparing each calibrated point with
and without the modulation. Signal transients are measured
by pulsing the MOSFET drain voltage at approximately
1 kHz and capturing the resonator responses on both the
gain and loss sides. The captured signals can be frequency
analyzed to obtain the modulated (or unmodulated) spec-
trum, see Fig. 2. Close attention has to be paid to avoid
saturation of any of the components in the signal pick-
up chain.

Theoretical considerations.—Using Kirchoftf’s laws, the
dynamics for the voltages V(V,) of the gain (loss) side of
the periodically driven dimer is

& d
—V4+A—V+BV=0; V=(V,.V,), (1)
dr dr

where 7 = wyt is the rescaled time, wy = 1/+/LC and

_1[—7/(1—1—0)4—2& yc—2¢ }

P —yc—2¢ y(I+c)+2¢)
1[1+c+¢ c—¢

B:—[ ] )
p c—¢ l4+c+¢
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Above f=1+2c,y =R '\/L/C is the rescaled gain
or loss parameter, and ¢ (¢) denotes the first (second)
derivative of the scaled capacitive coupling ¢ =C,/C =
co + ecos (w,7) with respect to the scaled time z.
Equation (1) is invariant under joint parity P and time
T operations, where 7 performs the operation 7 — —z and
‘P is the Pauli matrix o,.

The eigenfrequencies w,(a = 1,2) of system Eq. (1) in
the absence of driving are given as

1 2 2 2 2
e — 1) -
Ou =S e (\/n r+ (=D ver—v (3)

where the spontaneous P7-symmetry breaking point
and the upper critical point can be identified as yp;r =
V1+2co—1 and y. = +/1+ 2cy + 1, respectively, and
they are both determined by the strength of the (capaci-
tance) coupling between the two elements of the dimer.
A parametric evolution of these modes, versus the gain or
loss parameter y, is shown in Fig. 2(a) where the open
circles represent Eq. (3) and the color map shows the
experimental results. We find that the spectrum of the
undriven dimmer is divided in two domains of exact
(y < yp7) and broken (y > yp7r) P7 -symmetry phase.

In order to investigate the effects of driving we now turn
to the Floquet picture. We therefore employ a Liouvillian
formulation of Eq. (1). The latter becomes
dy r

R T S

and allows us to make equivalences with the time-
dependent Schrodinger equation by identifying a non-
Hermitian effective Hamiltonian H ¢ = 1L.

The general form of the solution of Eq. (4) is given
by Floquet’s theorem which in matrix notation reads
F(r) = ®(r)e™?" with @[z + (27/w,)] =®(z), O a
Jordan matrix, and F(7) a 4 x 4 matrix consisting of four
independent solutions of Eq. (4). The eigenvalues of Q are
the characteristic exponents (quasienergies) which deter-
mine the stability properties of the system: namely, the
system is stable (exact P7 phase) if all the quasienergies
are real and it is unstable (broken P7 phase) otherwise.
We can evaluate the quasienergies by constructing the
evolution operator U(z,0) = F(z)F~'(0) via numerical
integration of Eq. (5) [or of Eq. (1)]. Then the quasienergies
are the eigenvalues of 1/(—-2z/w,,)InU(r = 27/w,,,0).

In Figs. 2(a)-2(g) we report our numerical findings
together with the experimentally measured values of the
quasienergies versus the gain or loss parameter. Figures 2(a)
and 2(d) show the unmodulated situation. Figures 2(b)
and 2(e) show the behavior at modulation frequency w,, =
0.0198 and modulation amplitude € = 0.01. Finally,
Figs. 2(c) and 2(f) show the evolution of the spectrum with
a small change in modulation frequency w,, for fixed €. See
the Supplemental Material [50] for details of the analysis.

We find several new features in the spectrum of the driven
‘PT -symmetric systems. The first one is the existence of a
cascade of domains for which the system is in the broken
‘PT phase. These domains are identified by the flat regions,
seen in Figs. 2(b) and 2(c) where the real parts of
eigenfrequencies have merged in the vicinity of the crossing
points (indicated by the arrows and stars) and the emerging
nonzero imaginary parts shown in Figs. 2(d)-2(f). The size
and position of these unstable “bubbles” are directly con-
trolled by the values of the driving amplitude e, compare
Figs. 2(a) and 2(d) with Figs. 2(b) and 2(e) or by the driving
frequency w,,, compare Figs. 2(b) and 2(e) with Figs. 2(c)
and 2(f). The bubbles are separated by y domains where
the system is in the exact (stable) P7 phase. The transition
between stable and unstable domains occurs via a typical
EP degeneracy [notice the square-root singularities in
Figs. 2(d)-2(f)]. Eventually, the system becomes unstable
beyond some critical gain or loss value y,,,, which is defined
as the maximum value of the gain or loss parameter above
which there are no further stability domains. Generally y .«
depends on both ¢ and w,, and in the limit of ¢ = 0 becomes
equal to yp7. Figure 2(g) maps the numerically determined
PT exact (white) and broken (shaded) phases for y fixed at
the position of the arrows in the accompanying plots.

A theoretical understanding of the spectral metamorphosis
from a single exact or broken phase to multiple domains
of broken and preserved P7 symmetry, as e increases
from zero, is achieved by utilizing the notion of Floquet
Hamiltonian H. To this end, we first introduce a time-
dependent similarity transformation R (see Supplemental
Material [50]), which brings H.s to a symmetric form.
Under this transformation, Eq. (4) takes the form

d .~
1—y =Hy;

. d
= -1 _ -1
o H=RH.R™ =R R (5)

which dictates the evolution of the transformed state
w = Ry. The matrix H has the form

r_3u 31 .
-5 ¢+t \/‘ c-+ \/‘ 25
y 1c® 1c® y
C - — - C_—
I +t 2/ X059 3(1120) N/,
H=H" = ,
c _|_ y _ 1c® 1c® c, — y
- 2\/[; 2(l+2é") 2(1+2i") + 24/B
3ic iy y 3¢
3ic c._ — c., — _dw
Y N/ RN/ 25|

where ¢, =1+1(/142¢//B) and ¢ denotes the third
derivative of the capacitive coupling with respect to the

scaled time 7. We can easily show that PTHPT = H
where P =

We are now ready to utilize the notion of Floquet
Hamiltonian H; whose components are given by

oGl and T:7 = —7,1 > —u.
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<(Z, n‘HF|/B’ l> - H((xr;j_h + na)méaﬁ5nb (7)

where the subscripts a, f = 1, 2, 3, 4 label the components
of H, see Eq. (6), n, | are any integers, and I:Ig/’j) =

1/(2n/w,) [ 27/ H,p(z)e"@n*dr. In this picture the
quasienergies are the eigenvalues of the Floquet
Hamiltonian Hjy. Equation (7) defines a lattice model
[51] with connectivity given by the off-diagonal elements
of Hr and an on-site gradient potential nw,,.

Within the first order approximation to the strength of the
driving amplitude & and the modulation frequency w,, ~
O(e), the Floquet Hamiltonian is symmetric and takes the
block-tridiagonal form Hy = Hp o + eHp + O(&*) where
(n|Hpo|n) = HY|,_y + nw,,I, consists of the diagonal
blocks of Hy while (n + 1|Hp|n) = (n|Hp ln+1) =X
consist of off-diagonal blocks of Hy. The 4 x 4 matrix X
has the form

0 -y —1—y 0

1 1=y 0 0 —1+y
:4(1—|——260)3/2 —-1—y 0 0 1ty
0 —1+y 1+vy 0
(8)

Next we proceed with the analytical evaluation of the
quasienergies. First, we neglect the off-diagonal block
matrices Hy; and diagonalize Hp,. To this end, we

construct a similarity transformation Pg 7 |g oPo =
diag{®,, 0|, —w,, —w, }. Correspondingly the eigenvalues
of Hpq are simply {w, + nw,,, ®; + nw,,, —o| + nw,,,
—w, + nw,, }; i.e., the spectrum resembles a ladder of step
w,, with the basic unit associated with the eigenfrequencies
of the undriven dimer Eq. (3). The resulting ladder
spectrum (white circles) is shown in Fig. 2(a) versus the
gain or loss parameter y. Level crossing occurs at some
specific values of y\/) < ypr, ie., s, + jw,,
When the driving amplitude ¢ is turned on, the crossing
points evolve to broken P7-symmetry domains with
respect to gain or loss parameter y. The centers of the
instability bubbles are associated with y/) which is con-
trolled by w,, [see Figs. 2(b) and 2(c)]. Furthermore, the
real part of the eigenfrequencies become degenerate for a
range of y values around y\/), Fig. 2(b), while an instability
bubble emerges for the imaginary part—see Fig. 2(e) for
numerical (blue solid lines) and experimental data (filled
aqua circles). The transition points from stable to unstable
domains have all the characteristic features of an EP.

To understand this phenomenon, we consider the effect
of the off-diagonal term eH . ;. For simplicity, we focus on

-—a)1|

the unstable region around the crossing point at y(!).
Application of degenerate perturbation theory to the nearly
degenerate levels @, and o, + w,, gives

(03 + 0y + w,,) & \/(0)2 -0 —w,)’ + 42X, X5,
w = )

©)

where X = Py'XP, and the subscripts indicate the corre-
sponding matrix components. Around the EP, @ can be
written as

Re(w)~o,|,m;  Im(o) ==£C,\/r=70. v>ro (10)
which has the characteristic square-root singularity of
EP degeneracies. The constant C,, depends on €, w,,
(see Supplemental Material [50]), and y, is the solution
of the equation (w, — @, — ,,)* + 462X 1,(7) X5, (y) = 0
[see Egs. (8) and (9)]. For our experiment, where yy — ypr
and ypy — 0, we estimate that

B [1 B (\/Ewm+ \/2w51+s(4yPT+e)>T R

dypr+e

From Eq. (10) we see that both w,,, € are responsible for
a renormalization of the coupling between the two levels
[compare with Eq. (3)]. Predictions [Eq. (10)] are in
agreement with the numerical and experimental data [see
green line in Figs. 2(e) and 2(f)]. Higher orders of EPs y/)
can be analyzed in a similar manner after incorporating
higher order perturbation theory corrections. In Fig. 2(g)
we report a summary of P7 exact and broken domains in
the parametric (e, ®,,) space [52,53] where y/ypr = 0.74
[indicated by white arrow in Figs. 2(a)-2(c)]. Obvious
consequences of the (e, ®,,) control of stable-unstable
domains can be also observed in the dynamics (see
Supplemental Material [50]).

From Eq. (11) we can also deduce that for constant w,,
(determining the center of the bubble), the edges of the
instability domain are pushed away when ¢ increases. Thus
the broken P7 -symmetric regimes can broaden beyond the
yp7 border by controlling @,, or/and e. For example, in
Figs. 2(e) and 2(f) we can see the revival of the exact P7
phase around y/ypr = 1.07 as the driving frequency
increases. In this case, the center of the nearby instability
bubble, which is controlled by w,,, shifts to smaller y values
and eventually disappears together with the whole bubble.
At the same time y,,,, remains roughly unaffected. In fact
in the high frequency limit, one can average out the time
dependence and recover a “static” P7 -symmetric dimmer
with renormalized coupling constants [39,40]. In this limit,
and for small €, one can easily show using Eq. (4), that
Ymax & YPT- Consequently, the stability domain between
the upper border of the y{!) bubble and y,,,, increases.

Conclusions.—We have experimentally demonstrated
that P7 -symmetric systems containing periodically driven
components are capable of controlling the presence,
strengths, and positions of multiple exact-phase domains,
bounded by corresponding exceptional points. The generic
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behavior is well described by a perturbative analysis of
the Floquet Hamiltonian, and opens up new directions of
exceptional point management in a variety of electronic,
mechanical, or optomechanical applications.

This research was partially supported by an AFOSR
MURI Grant No. FA9550-14-1-0037, and by NSF Grants
No. EFMA-1641109 and No. DMR-1306984.

Note added.—Recently, we became aware of Ref. [54].
This contribution presents a quantum realization of a
dissipative Floquet system of ultracold atoms, and the
setup does not involve gain.
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