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An array of N closely spaced dipole coupled quantum emitters exhibits super- and subradiance with
characteristic tailorable spatial radiation patterns. Optimizing the emitter geometry and distance with
respect to the spatial profile of a near resonant optical cavity mode allows us to increase the ratio between
light scattering into the cavity mode and free space emission by several orders of magnitude. This leads to
distinct scaling of the collective coherent emitter-field coupling vs the free space decay as a function of the
emitter number. In particular, for subradiant states, the effective cooperativity increases much faster than the
typical linear ∝ N scaling for independent emitters. This extraordinary collective enhancement is
manifested both in the amplitude and the phase profile of narrow collective antiresonances appearing
at the cavity output port in transmission spectroscopy.
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The confinement of atoms and photons in small volumes
with very low loss has been a renowned success [1–3] as it
allows for tests of light-matter interactions where the
quantum nature of both comes into play. In a cavity
quantum electrodynamics setup, the photon-emitter inter-
action strength g1 ∝ μE for an emitter with a dipole
moment μ is strongly enhanced by decreasing the field
mode volume and, thus, increasing the local field per
photon E. In a standard Fabry-Pérot cavity geometry, this is
achieved by closely surrounding the emitter with two high-
reflectivity mirrors. The atom-photon interaction time is
then enhanced by a factor roughly proportional to the cavity
finesse characterizing the number of round trips a photon
can make before escaping to the environment at a rate κ.
At the single quantum emitter level, this has facilitated
experimental progress towards strong coupling allowing
the study of single photon nonlinear effects, such as the
photon blockade regime [4], of vacuum Rabi splittings and
other tests of fundamental quantum optics effects [5,6].
The single emitter cooperativity C1 ¼ g21=ðκγÞ (where γ

is the rate of spontaneous decay into free space) is a well
established measure for strong light-matter interaction
when C1 ≫ 1. Since, for a single two-level emitter, the
dipole matrix element μ appears both in g1 ∝ μ and γ ∝ μ2,
the cooperativity C1 is merely a geometric factor indepen-
dent of μ [7]. This means that cavity design (increasing the
finesse and decreasing the transverse mode area) is the
central aspect for reaching high single emitter coopera-
tivity. In the parameter regime of large κ, one often targets a
large effective cooperativity by coupling N emitters simul-
taneously to the same cavity mode. For distant fully
independent emitters, the effective cooperativity then
scales like Ceff ¼ C1N, as the emitter-cavity coupling gN ¼
g1

ffiffiffiffi
N

p
increases proportionally to

ffiffiffiffi
N

p
, while the free space

emission rate γ stays constant. However, especially for

small emitter-emitter separations, their coupling to the
vacuum modes is inherently collective generating states
with superradiant and subradiant decay [8], which invalid-
ates the above simple scaling law. Such decay processes
have recently attracted interest in 1D and 2D subwave-
length spaced atomic arrays used in topological quantum
optics, high extinction media, or photon storage [9–14].
We introduce an alternative, improved path, towards

reaching a high cooperativity based on collective dissipa-
tive effects. The mechanism involves the separate optimi-
zation of the coherent coupling of the emitters to the cavity
mode and of the incoherent emitter-vacuum coupling. For a
configuration of N closely spaced emitters (separation less
than the transition wavelength λe), the coupling to free

FIG. 1. System setup. (a) Optical cavity supporting (b) different
transverse modes coupled to (c) a rigid array of dipole-dipole
interacting quantum emitters. (d) Light-matter interaction creates
an antiresonance dip and a fast phase switch around the emitter
resonance in the cavity transmission spectrum as shown on the
right for a single emitter with g1 ¼ κ=10 ¼ 2γ.
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space vacuum modes can be strongly suppressed [8,15,16].
At the same time, a periodic arrangement of emitters in a
rigid geometry (for example implanted inside a solid-state
matrix), transversely placed inside a single cavity mode can
lead to optimized collective coupling [17]. The upshot is
that Ceff scales strongly in a nonlinear fashion with N, as
the effective collective free space decay rate γeff can be
dramatically suppressed. We propose an example for the
implementation of phase imprinting using higher order
transverse cavity modes leading to the preferential excita-
tion of subradiant collective states. The effect is directly
observable by homodyne detection of the cavity output,
displayed both in amplitude and phase antiresonant behav-
ior [18,19]. As opposed to the strong coupling regime
exploited in [18], this Letter considers the bad cavity
regime κ ≫ g1

ffiffiffiffi
N

p
where one typically expects modest

antiresonance phase shifts. Because of the collectively
increased effective cooperativity, very narrow antiresonan-
ces occur accompanied by extremely fast and large phase
shift switches rendering such a system perfect for high
resolution spectroscopy.
Model.—Let us consider an ordered ensemble of quan-

tum emitters modeled as two-level systems with ground
state jgii and an excited state jeii (split by frequency ωe)
located at ri (for i ¼ 1;…; N) (see Fig. 1). The levels are
connected by individual Pauli raising and lowering oper-
ators σ�i with σxi ¼ σþi þ σ−i , σyi ¼ −iðσþi − σ−i Þ, and
σzi ¼ σþi σ

−
i − σ−i σ

þ
i . The emitters are embedded in a static

2D support, transversely placed in the center plane of a
single higher order transverse electromagnetic (TEM)
mode at frequency ωc (see Fig. 1). At position ðr; zÞ along
the cavity axis z, the electric field operator is proportional
to a cosðkzÞfðrÞϵy, where a is the annihilation operator of
the cavity mode, k ¼ ωc=c, fðrÞ is the transverse spatial
mode profile, and ϵy denotes linear polarization in the y
direction. The cavity is laser driven at frequency ωl with
power P through one mirror. In a frame rotating at ωl, the
dynamics of the mode of interest is described by

Hc ¼ ℏΔca†aþ iℏηða† − aÞ; ð1Þ

where Δc ¼ ωc − ωl and η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pκ=ðℏωlÞ

p
. Cavity damp-

ing with decay rate κ occurs via the collapse operator a.
At dense spacing (jri − riþ1j < λe), one has to account

for the direct emitter-emitter interactions via the transition
dipole moments μi. The collective dynamics is governed by
the free Hamiltonian He and the collective part Hdip,

He þHdip ¼ ℏΔe

X
i

σþi σ
−
i þ ℏ

X
i;j∶i≠j

Ωijσ
þ
i σ

−
j ; ð2Þ

where Δe ¼ ωe − ωl, and Ωij is the strength of the
coherent dipole-dipole interaction between emitters i and
j (see Supplemental Material (SM) [20]). Moreover, the
incoherent collective dynamics leads to mutual decay

rates γij that can be accounted for with the Lindblad
superoperator [21]

Le½ρ� ¼
X
i;j

γijð2σ−i ρσþj − σþi σ
−
j ρ − ρσþi σ

−
j Þ: ð3Þ

In the single cavity mode limit, the interaction is described
by the Tavis-Cummings Hamiltonian

Hint ¼ ℏ
X
i

giða†σ−i þ aσþi Þ; ð4Þ

where the coupling strength gi of an emitter at position
ðri; ziÞ is proportional to cosðkziÞfðxi; yiÞϵy · μi.
The complete dynamics of the system with density

matrix ρ are then described by the master equation

_ρ ¼ i
ℏ
½ρ; H� þ Lc½ρ� þ Le½ρ�; ð5Þ

where H¼HcþHeþHdipþHint and Lc½ρ� ¼ κð2aρa†−
a†aρ − ρa†aÞ. Equivalently, the dynamics can be described
via quantum Langevin equations (QLE) [22] (see SM [20]).
Single emitter antiresonance.—We consider a reference

system with a single emitter in the low excitation limit
hσzi i ≈ −1 where a linear coupled set of QLEs can be
derived. For a resonant interaction (i.e.,Δ≡ Δc ¼ Δe), this
leads to the following mean field equations:

h _ai ¼ −ðκ þ iΔÞhai þ η − ighσ−i; ð6Þ

h _σ−i ¼ −ðγ þ iΔÞhσ−i − ighai: ð7Þ

These equations exhibit the phenomenon of atomic anti-
resonances [18,23], where the resonantly driven atomic
dipole oscillates in a way to counteract the cavity drive and
leads to a minimum of transmission [24]. We analyze its
dependence on γ by studying the steady-state amplitude
transmission t, which is proportional to the output field
amplitude t ¼ κhai=η. It reads

t ¼ κ

iΔþ κ þ g2=ðiΔþ γÞ : ð8Þ

The transmitted intensity is T ¼ jtj2 and the relative phase
shift caused by the emitter is ϕ − ϕc, where ϕ ¼ ArgðtÞ ¼
arctanðℑftg=ℜftgÞ and ϕc ¼ − arctan ðΔc=κÞ is the phase
shift of the bare cavity. The detection of the relative phase
shift can be done by homodyne detection and analysis of
the output field quadratures. Scanning the laser frequency
(Δ), we find that the coherent transmitted intensity through
the cavity contains an antiresonance dip aroundΔ ¼ 0 with
a corresponding jump in the phase shift (see Fig. 1). Fitting
the antiresonance with a Lorentzian (see SM [20]), we find
a depth of 1 − TðΔ ¼ 0Þ ¼ C1ðC1 þ 2Þ=ðC1 þ 1Þ2, and a
width that can be approximated by γðC1 þ 1Þ ¼ g21=κ þ γ

PRL 119, 093601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 SEPTEMBER 2017

093601-2



(for a regime where both g1; γ ≪ κ). An almost vanishing
transmission is, then, a signature of reaching a regime of
strong cooperativity (C1 ≫ 1).
Collective antiresonance of emitter arrays.—As C1 is

independent of μ, an emitter with a larger dipole moment
will only broaden the antiresonance. For coupled emitter
arrays, this is, however, no longer valid, and one can design
the radiative properties of the ensemble. For collective
subradiant resonances of an array the free space emission is
suppressed, while we still can optimize the coupling to the
cavity mode. This generates extremely sharp and deep
antiresonances accompanied by a fast and large phase
change within a narrow frequency range. The immediate
upshot of this regime is a dramatically enhanced effective
cooperativity, which renders it an ideal configuration for
high resolution spectroscopy.
The set of coupled QLEs for many emitters can be cast in

vector form

h _ai ¼ −iΔchai þ η − iG⊺hσi − κhai; ð9Þ

h _σi ¼ −iΔehσi − iΩhσi − iGhai − Γhσi; ð10Þ

where, now, σ and G are column vectors with entries σ−i
and gi. The matricesΩ and Γ have the elementsΩij and γij.
In steady state, the transmission coefficient for the cavity
amplitude reads

t ¼ κ

iΔc þ κ þG⊺G=½iΔeffðΔeÞ þ γeffðΔeÞ�
; ð11Þ

where the effective Δe-dependent collective energy shifts
and linewidths are derived from the matrix

MðΔeÞ ¼ iΔe1þ iΩþ Γ; ð12Þ

as real and imaginary parts

ΔeffðΔeÞ ¼ ℑ

�
G⊺G

G⊺M−1ðΔeÞG
�
; ð13Þ

γeffðΔeÞ ¼ ℜ

�
G⊺G

G⊺M−1ðΔeÞG
�
: ð14Þ

In analogy to the single emitter case, we can define an
effective N-emitter cooperativity by

CeffðΔeÞ ¼
G⊺G

κγeffðΔeÞ
: ð15Þ

This equation provides a main message of the Letter, as it
shows that the numerator and denominator no longer share
the same dependency on μ. As γeff is not a natural constant
of the ensemble, but strongly dependent on the relative
positioning and phase of individual emitters, one can reach

subradiant states with γeff ≪ γ. By proper design of the
cavity transverse field amplitude profile, the numerator can,
at the same time, be maximized, resulting in a scaling up of
Ceff well above the independent emitter case Ng21=ðκγÞ.
Two emitters.—Let us elucidate the mechanism in the

two emitter case with adjustable separation d ¼ jr1 − r2j.
We distinguish two fundamentally different cases: (i) uni-
form coupling G ¼ ðg; gÞ⊺ and (ii) opposite coupling
G ¼ ðg;−gÞ⊺, resulting in G⊺G ¼ 2g2 for both cases.
The matrix of interactions can be diagonalized with
eigenvalues iðΔe � Ω12Þ þ ðγ � γ12Þ, signaling the pres-
ence of collective super- and subradiant states (γ � γ12)
shifted by�Ω12 from the emitter resonance ωe (the positive
sign corresponds to uniform coupling).
In the extreme case, where d ≪ λe, the mutual decay

approaches γ12 → γ, and the effective cooperativity reaches
(i) Ceff → g2=ðκγÞ and (ii) Ceff → ∞, respectively. To
account for dipole-dipole energy shifts, we impose
ΔeffðδÞ ¼ 0 and, subsequently, tune the cavity such that
ωc ¼ ωe − δ; i.e., we match the cavity to the shifted
collective emitter resonance. For two emitters, the imposed
resonance condition yields δ ¼ �Ω12. The resulting depth
and width of each antiresonance isCeffðCeffþ2Þ=ðCeffþ1Þ2
and γeffðCeff þ 1Þ, respectively. Hence, for d → 0, we have
(i) an antiresonance depth as for the single emitter but twice
the width (superradiance), and (ii) an antiresonance that has
a depth of 1 and a width of 2g2=κ (subradiance). While the
width of the antiresonance is still limited by g, the phase
switch bandwidth is independent of g. This is a direct
measure of the subradiance as the slope of the phase
switch in this limit is 1=γeff (see SM [20]). The result is
reminiscent of the one in [18], however, in a very different

FIG. 2. Targeting antiresonances. (a), (c), and (e) show the
cavity intensity transmission and (b), (d), and (f) the correspond-
ing phase for a scan of the laser frequency. The upper row
corresponds to ωc ¼ ωe and asymmetric coupling gi ¼ ð−1Þig;
the middle row illustrates frequency selection as ωc ≃ ωm¼N .
Finally, we also match the symmetry to the state corresponding
to the subradiant antiresonance (see SM [20]). The parameters
are N ¼ 10, g ¼ κ=50, γ ¼ κ=40 with a chain separation of
d ¼ 0.08λe.
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and less stringent regime, where only weak coupling is
required and where usually moderate phase shifts are
expected; in contrast, for γeff → 0, the phase even exhibits
a π phase change within an extremely narrow frequency
range, since in this regime, limΔ→0�ðϕ − ϕcÞ ¼ �π=2.
Addressing collective subradiant states.—The above

results can be generalized to N emitters in an equidistant
chain configuration (d ¼ jriþ1 − rij). Analytical consider-
ations can be made under a nearest neighbor approximation
for Hdip in the single-excitation regime, very well
justified at small interemitter distances and weak driving.
Diagonalization of Hdip gives rise to an N-band problem
with energies ωm¼ωeþ2Ω12cos½mπ=ðNþ1Þ� for m run-
ning from 1 to N. The Lindblad term then shows a ranking
of levels from superradiant (m ¼ 1) to very subradiant
(m ¼ N) for d ≪ λe=2 [8]. Moreover, the eigenvectors
jmi¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðNþ1Þp P
jsin½mjπ=ðNþ1Þ�σþj jgi⊗N have a spe-

cific geometry with almost full symmetry (m ¼ 1) to
almost full asymmetry (m ¼ N). The two distinct cases
involving uniform G ¼ ðg; g;…Þ⊺ and opposite couplings
G ¼ ðg;−g;…Þ⊺ then almost perfectly address these fully
symmetric jm ¼ 1i and asymmetric jm ¼ Ni states.
Illustrated in Figs. 2(a) and 2(b) is a scan of the collective

resonances of a ten-emitter chain with gi ¼ ð−1Þig and
ωc ¼ ωe. Both the dip and phase show an off-resonant
selection of collective subradiant states. We then selectively
target a given state by fitting the cavity resonance to its energy
as shown in Figs. 2(c) and 2(d). To achieve this, we focus
around the state jm ¼ Niwith energy ωm¼N and we recalcu-
late the state’s energy by imposing ΔeffðδÞ ¼ 0, after which
we set ωc ¼ ωe − δ. We note that, as opposed to the two-
emitter case, we cannot find an analytical value for δ but
solve for it numerically. It corresponds to a value close to
ωm¼N − ωe. Finally, we compare the results to an ideal
procedure where the components of G are chosen such that
theymatch thegeometry of the target state [Figs. 2(e) and2(f)].
The characteristics of the antiresonances can be quantified

by Ceff (see Fig. 3). As above, we assume the asymmetric
cavity field profile with G ¼ ðg;−g;…Þ⊺ and make a
reference plot Copt as a function of d. The optimal coop-
erativity Copt is obtained from Eq. (15) by substituting the
decay rate with the minimal eigenvalue of Γ [25]. In reality,
owing to imperfect phase matching to the most subradiant
state as well as to the inherent level shifts brought on by
the dipole-dipole interactions, the effective gain is more
modest. Nevertheless, as suggested by the blue (solid) curve
in Fig. 3, for d < 0.5λe the enhancement is considerably
larger than in the noninteracting quantum emitters case.
Subradiance using transverse phase gradients.—While,

in practice, individual phase imprinting on the subwave-
length scale is not a trivial task, we present a theoretical
illustration using 1D or 2D ensembles transversely placed
in the center of a cavity, in the focal point of a higher
order TEM mode. In the plane of the emitters, the field
profile of a Gaussian-Hermite mode of order m, n is

fðx; yÞ ¼ AmnHmð
ffiffiffi
2

p
x=wÞHnð

ffiffiffi
2

p
y=wÞe−ðx2þy2Þ=w2

. Here,
HnðxÞ is the nth Hermite polynomial, w is the waist of
the beam in the center of the cavity assuming a perfectly

symmetric cavity and Amn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπ2ðmþnÞm!n!Þ

q
. Higher

order TEM modes exhibit multiple extrema of opposite
signs in the transverse profile. For a sufficiently small w (of
the order of λe), adjacent extrema can be closely spaced (for
a TEMm0 mode around w=

ffiffiffiffi
m

p
) resulting in the desired

coupling asymmetry. Note that, in reality, owing to the
diffraction limit, optical cavities might not be stable under
high transverse mode operation, in which case, an alter-
native stability regime has to be found. We illustrate the
phase imprinting mechanism for a chain illuminated by a
TEMm0 mode with increasing m in Fig. 4(a), where now g
is the coupling strength in the center of the TEM00 mode.
While, for small m, the effective cooperativity decreases

FIG. 3. Scaling of effective cooperativity. Ceff for N ¼ 10
as a function of d=λe. The effective cooperativity (blue, solid
curve) is compared to an idealized case of perfect subradiance
(yellow, dashed curve). We used Δc ¼ Δeff ¼ 0, g ¼ κ=30, and
γ ¼ κ=40.

FIG. 4. Targeting subradiance via transverse mode driving.
(a) Effective cooperativity as a function of m for N ¼ 10 and
under illumination with TEMm0 mode. The inset shows a
decrease in cavity coupling jGj. (b), (c) Comparison of anti-
resonance signatures for TEM00 addressing (red, dashed line) vs
TEMm0 addressing (blue, solid line) with m ¼ 21, corresponding
to the point enclosed in the red box in (a). The parameters are
d ¼ 0.2λe, w ¼ λe, g ¼ κ=30, γ ¼ κ=40, and Δeff ¼ 0 at Δc ¼ 0.
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(owing to a decrease in jGj), at higher m the alternating
field phases are partially addressing asymmetric collective
states of high robustness resulting in a considerably
enhanced effective cooperativity. The very sharp cavity
response for a fixed mode m ¼ 21 is shown in Figs. 4(b)
and 4(c) in comparison to the modest results expected for a
TEM00 illumination. Moreover, we have numerically
investigated 2D geometries as well and found, for example,
in the case of a 3 × 3 square array with d ¼ 0.2λe ¼ w and
g ¼ κ=20 ¼ 2γ (as depicted in Fig. 1), an enhancement of
effective cooperativity from the bare value Ng2=ðκγÞ ¼ 0.9
to Ceff ≈ 80.1.
Conclusions.—Tailoring the collective dissipative

dynamics of N dipole coupled emitters can lead to high
effective cooperativity even in the regime Ng2=ðκγÞ ≪ 1.
The immediate consequence is the occurrence of a narrow
antiresonance dip with fast spectral phase switching with-
out the need of strong individual coupling as in Ref. [18].
As it applies to narrow atomic transitions, it hints towards
applications for precision spectroscopy and quantum net-
work characterization. As opposed to using a lossy cavity
field as an engineered bath leading to superradiance as in
Ref. [26], we only considered the naturally occurring
environment provided by the free space radiation modes.
The regime treated here is perturbative; i.e., the emitters do
not modify the bare mode functions of the cavity mode.
Increasing the collective scattering rate close to unity
[9–12,27,28] should result in an interesting regime of
cavity QED where the cavity mode functions are strongly
modified by a relatively modest number of emitters.
A dynamical regime can occur and be exploited for
hybrid optomechanical applications [29,30] with emitters
implanted on vibrating membranes. Stronger phonon-
photon interactions could be designed that benefit from
narrow collective resonances [30]. Similar considerations
can be used to analyze metamaterial arrays, where classical
analogues of subradiant states are also experimentally
seen [31].
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