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We propose a novel method to test the binary black hole nature of compact binaries detectable by
gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact
objects. The spirit of the test lies in the “no-hair” conjecture for black holes where all properties of a Kerr
black hole are characterized by its mass and spin. The method relies on observationally measuring the
quadrupole moments of the compact binary constituents induced due to their spins. If the compact object
is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin.
Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of
the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which
explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the
nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced
quadrupole moment of the compact binaries from GWobservations can provide a unique way to distinguish
binary BH systems from binaries consisting of exotic compact objects.
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Introduction.—With the twin detections of binary black
hole mergers by advanced LIGO interferometers [1], black
holes (BHs) are no longer just elegant mathematical entities
but a physical reality [2–4]. Now we know that BHs do
exist in nature, and they can form a binary BH system and
merge emitting gravitational waves (GWs) to form a single
BH. Analytical frameworks of post-Newtonian theory (PN)
[5] and BH perturbation theory [6] together with numerical
relativity [7] have provided us a theoretical platform to
study and interpret the GWobservations of compact binary
mergers. Both the observed events, GW150914 and
GW151226, were found to be consistent with a binary
black hole merger with approximate total masses of 65M⊙
and 22M⊙, respectively. The strong evidence for their
binary black hole (BBH) nature comes from the following
facts [8]: (1) Keplerian estimates of the orbital size are
naturally explained by invoking a binary BH system, (2)
the observed ringdown waveform is consistent with the
least-damped quasinormal mode of a Kerr BH [9] (with the
inferred final mass and spin), and finally, (3) the recon-
structed signal matches excellently with the numerical
relativity waveforms of a BBH merger.
With planned upgrades towards operating advanced

LIGO detectors at respective design sensitivities and more
detectors (such as advanced Virgo [10], KAGRA, and
LIGO India [11]) joining the worldwide network of GW
interferometers, many more such detections are likely to
happen in the future observation runs [12]. One of the
important questions from a fundamental physics viewpoint
is whether we can confidently distinguish the mergers of
BBHs from that of binaries comprised of exotic compact

objects such as gravastars [13] and boson stars [14], which
may mimic many features of a BBH merger (see, also,
Ref. [15] for a recent review on possible BH mimickers and
their GW signatures).
The definition of a Kerr BH is very closely tied with the

“no-hair” conjecture which says that all the properties of a
Kerr BH are completely described by its mass and spin. The
quasinormal mode spectrum of a Kerr BH that is formed,
say, by the merger of two compact objects would, hence,
be completely characterized by the mass and spin of the
remnant BH. This is a topic that has been studied in great
detail over the past two decades. References [16,17] studied
the abilities of GW detectors to carry out spectroscopy of
a remnant compact object thereby testing its BH nature.
The possibility of constraining specific BHmimicker models
such as boson stars using quasinormal mode spectrum
observations has been discussed in Refs. [18,19]. If we
have a stellar mass BH orbiting a supermassive BH or an
intermediate mass BH, the dynamics of the stellar mass BH
(treated as a test particle) would encode information about
the multipole structure of the central BH and, therefore,
constrain any possible deviations from the BH nature
[20–22]. While these methods are restricted to studying
the BH nature of the central compact object, the recent
proposals in Refs. [23–25] showed how the measurement of
the tidal Love number of a compact binary may be used to
detect exotic compact objects constituting a compact binary.
In this Letter, we propose a new method to test the binary

black hole nature of the detected GWevent by measuring the
spin-induced quadrupole moments of the binary’s constitu-
ents, whose values are unique for Kerr BHs in general

PRL 119, 091101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 SEPTEMBER 2017

0031-9007=17=119(9)=091101(6) 091101-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.091101
https://doi.org/10.1103/PhysRevLett.119.091101
https://doi.org/10.1103/PhysRevLett.119.091101
https://doi.org/10.1103/PhysRevLett.119.091101


relativity due to the no-hair conjecture. For an isolated Kerr
BH, it is well known that the quadrupole moment scalar is
given byQ ¼ −m3χ2, wherem is themass of theBH, and χ is
themagnitude of the dimensionless spin parameter defined as
χ⃗ ¼ S⃗=m2 (where S⃗ is the spin angular momentum vector of
the BH). For a non-BH compact object, this may be
generalized to Q ¼ −κm3χ2, with κ ¼ 1 as the BH limit.
Depending on the equation of state, studies have shown that
for neutron stars (NSs), κ may range between ∼2 and 14
[26,27]), for boson stars between ∼10 and 150 [28], and for
(thin shell) gravastars, κ may even take negative values [29]
(which means the spin leads to prolateness of the object
instead of oblateness).
In the PN model of compact binaries, the spin-induced

quadrupolemoment terms appear at the same order where the
leading order quadratic-in-spin terms appear (note, Q ∝ χ2),
which is second PN order [30]. The parameter κ that
characterizes the magnitude of the spin-induced quadrupole
moment (given the nature of the object) for each binary
component can be tagged as κ1 and κ2 following the notation
of Ref. [31] (throughout the paper, suffix 1 refers to the
heavier compact binary component and 2 the lighter one). If
we rewrite the waveforms in terms of the symmetric and
antisymmetric combinations of κ1 and κ2 given by κs ¼
ðκ1 þ κ2Þ=2 and κa ¼ ðκ1 − κ2Þ=2, respectively, then a BBH
system is specifiedbyκs ¼ 1, κa ¼ 0. This suggests, ifwe can
accurately measure κs and κa to be 1 and 0, respectively, we
have established that the detected compact binary is a BBH.
However, note that κs and κa are highly degenerate

parameters whose simultaneous extraction turns out to yield
almost no constraint on them (this will have to be revisited
using Bayesian methods in a future work). Hence, we resort
to a method where we fix κa to be 0, as expected for a Kerr
BBH, and then calculate the error bars associated with the
measurement of κs from GWobservations. The aim here is to
see how well can we estimate κs around the true value of 1
(for a BBH) and, hence, confirm that the observed system is
indeed a BBH. These error bars can be interpreted as upper
bounds on the value of κs allowed for exotic compact
objects. In this sense, the proposed test is a “null test” of
the BBH nature, where observations would constrain the
allowed range of deviations of κs from the BBH value.
Moreover, since the spirit of the test relies on the fact that
quadrupole moments of BHs in a BBH system would
depend only on the mass and the spin, the proposed test
can be regarded as the no-hair theorem test for the BBHs.
We wish to clarify that the error bars here refer to the

width of the measured distribution of κs at a fixed
confidence level (in our case, 1 − σ). Depending on the
masses and spins of the system, this width may be much
larger than 1, in which case, this may be better interpreted
as an upper bound on the allowed value of κs for the given
system. In most cases we have studied (in context of
advanced LIGO), it is less than ∼20 (see Figs. 1 and 2).
Since κs for interesting BH mimickers such as boson stars
can be as high as 150, the proposed method will be able to

put stringent, model-independent constraints on the param-
eter space of BH mimickers. It should also be noted that
though we have posed this as a null test, the proposed test
can detect the signatures of exotic compact objects through
a shift in the peak of the measured distribution away from 1,
as is expected for BH mimickers.
In general, if we parametrize the deviation of κ by

κ ¼ 1þ α (where α is the deformation parameter, which
is 0 for BHs) and assume that the constituents of the binary
are of identical types (α1¼α2), then, again, showing κs ¼ 1
is equivalent to showing the BBH nature of the compact
binary system. This is because we again have κa ≡ 0, which
is consistent with our original assumption for BBHs. Note
that even if the detected compact binary contains the two
stars, which have κ ≠ 1, the proposed method will be
sensitive in detecting them as they will add to the systematic
offset in the measured value of κs from 1. Hence, our
proposal to measure only κs should work for compact
binaries with any combination of compact objects when
applied to the real data.
Waveform model.—Because of the recent progresses in

the post-Newtonian modeling of spinning compact binaries
[31–35], we now have access to the higher order spin
corrections to the GW phasing and amplitude. Here we use
a waveform which is 2PN in amplitude and 4PN (note that
the phasing formula at the 4PN only includes spin-orbit tail
terms and, hence, is only partial; see a related discussion in
Ref. [35]) in phase and spins of the two compact objects
are considered to be along or opposite the orbital angular
momentum vector of the binary. The spin-induced quadru-
pole moment coefficient appears at 2PN, 3PN, and 3.5PN
orders. Parameters characterizing the spin-induced quadru-
pole moment appear at 2PN, 3PN and 3.5PN orders while
those that characterize the spin-induced octupole moment
appear at 3.5PN and are set to 1 (the BH value) as we focus
only on quadrupole here [36].
Estimation of κs.—We use the semianalytical parameter

estimation technique based on the Fisher information matrix
formalism [37] to deduce typical accuracies with which κs
may be estimated from GW observations. The Fisher infor-
mation matrix approach allows us to calculate the widths of
the posterior distribution of various parameters for Gaussian
noise and in the limit of a high signal-to-noise ratio (SNR) (see
Ref. [38] for a detailed discussion on the possible caveats).
Unlike previous works with PN waveforms which have
subdominant modes (e.g., Refs. [39,40]), we truncate the
waveforms at twice the orbital frequency of the binarywhen it
reaches the innermost stable circular orbit (2FISCO) as
opposed to the choice of kFISCO, where k is the maximum
number of harmonics of the orbital phase present in the
waveform. Here, the ISCO frequency is computed using
numerical fitting formulas listed in Eqs. (3.7) and (3.8) of
Refs. [41,42]. By doing so,we hope to control the systematics
due to the neglect ofmerger and ringdown. Thoughmuch less
realistic than numerical methods based on algorithms such
as Markov chain Monte Carlo (MCMC) calculations, the
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semianalytic method used here is significantly inexpensive in
terms of computational time and is expected to match the
predictions of numerical methods in the high SNR limit [43].
However, we caution that the errors we quote here should be
taken as a typical order of magnitude of the expected
errors which will be quantified in the future with MCMC
investigations.
For every system of interest, we construct a Fisher

information matrix using the waveform model discussed
above for the set of parameters ftc;ϕc; DL; ι;M; δ; χ1;
χ2; κsg which describe the signal. Here, tc and ϕc denote
the time and phase of the waveform at coalescence,
two mass parameters M ¼ ðm1m2Þ3=5=ðm1 þm2Þ2=5 and
δ ¼ jm1 −m2j=ðm1 þm2Þ are known as the chirp mass
and difference mass ratio of the binary, parameters (χ1, χ2)
denote the dimensionless spins of the binary components,
and finally, DL and ι are the luminosity distance and the
inclination angle of the binary, respectively. We consider
the problem from a single detector standpoint and, hence,
do not include the angles which describe the source
location in the set of parameters. We compute the lower
bound on the errors of each parameter (Cramer-Rao bound)
by taking the square root of the diagonal values of the
inverse of the 9 × 9 Fisher information matrix (covariance
matrix). These errors are calculated for different masses,
spins and inclination angles of the compact binary systems.
We consider the sources to be located and oriented in such a
way that they produce a SNR of 10 at the detector.
Projected advanced LIGO noise power spectral density
(PSD) [44] is used to compute the errors. The 1 − σ error
bars on κs (with a peak at 1) assume κa ¼ 0, which is the
case for Kerr BBHs. From a GW event, if we find that the
posterior distribution for κs is offset from 1, it may be taken
as a signature for at least one of the binary components to
be a non-BH object. Throughout the Letter, we quote errors
in the measurement of parameters characterizing the spin-
induced effects. However, as mentioned earlier, for many
parts of the parameter space, we find that errors are larger
than 100% for which the quoted errors should be consid-
ered as “bounds” on the parameter in question.
Results and discussion.—The dependences of the errors

(for a fixed SNR of 10) in measuring κs as a function of the
total mass for few mass ratio cases (top panel) and spin
configurations for a near-equal mass system (bottom panel)
for advanced LIGO sensitivity are shown in Fig. 1. This
clearly shows that the proposed test works very well for
highly spinning, near-equal mass systems. Evidently, the
observed improvement for rapidly spinning systems can be
attributed to the large spin-induced quadrupole moment they
possess. In addition, for nearly equal mass systems, the best
estimates of κs come from compact binaries in which the
spins of both components are aligned with respect to the
orbital angular momentum vector of the binary, and theworst
estimates are for those cases where the component spins are
antialigned with respect to the orbital angular momentum.
The decrease in the errorswithmass ratiomay be attributed to

the additional mass ratio and inclination angle dependences
that amplitude corrections bring in, which affect the corre-
lation of κs with other parameters (especially spins) in a
nontrivial way leading to the observed trend. On the other
hand, the dependence of the errors on the spin orientation is
due to its effects on the upper cutoff frequency. The figure
shows that even with a moderate SNR of 10, the proposed
test works very well for a number of mass ratio and spin
configurations,where the best cases haveΔκs < 0.5 (50%). It
is worth recalling that the allowed values of κs for BBH
mimickers, such as binaries involving boson stars, can be as
high as 150. Hence, the expected bounds are capable of
putting stringent constraints on those models.
Figure 2 displays the dependence of the errors of κs on

the component spins for two representative stellar mass
compact binaries with component masses ð5; 4ÞM⊙ and
ð10; 9ÞM⊙. The results are very promising and show that
for dimensionless spins larger than 0.5, the errors in
estimating κs are smaller than ∼5 in both the cases. This

FIG. 1. Errors in measuring κs as a function of the binary’s total
mass for three different mass ratio cases (top panel) and for
different spin configurations (bottom panel) for advanced LIGO.
The values of dimensionless spin parameters (χ1, χ2) are fixed at
0.9 and 0.8 for the top panel plots, whereas mass ratio (q) is fixed
to be 1.2 for the plots in the bottom panel. Both panels assume a
fixed inclination angle of the binary, ι ¼ π=3. The binary’s
location and other angular parameters are chosen in a way that
produces an observed signal-to-noise ratio of 10.
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would mean that the proposed test could be effective in
certain cases even with moderate spins.
Since the GW detectors are poised to observe tens to

hundreds of BBH mergers in the coming years, we also have
the interesting possibility of combining the constraints from
these individual observations. If there are N detections, the
errors go down by roughly a factor of

ffiffiffiffi

N
p

. Hence, the
combined posterior of about 100 events on the null hypoth-
esis may narrow down the constraints on κs by a factor of 10.
Possible constraints on κs from space-based detectors.—

With the recent success of the LISA pathfinder mission
[45], there is renewed interest in pursuing a GW detector in
space with low frequency sensitivity capable of observing
supermassive BBH (SMBBH) mergers. Towards this goal,
we extend our study to the case of low frequency space-
based detectors like LISA and projected constraints pos-
sible on κs from them. The results are shown in Fig. 3
which uses the noise PSD of Ref. [46]. The SMBBH
system is assumed to be at a luminosity distance of 3 Gpc.
We find that the LISA observations of SMBBH mergers
can very accurately constrain the κs parameter and, hence,
confirm the BBH nature of the observed sources, tightly
constraining any alternatives to BBHs. It should be clear

from Fig. 3 that errors in measuring κs are smaller than 10%
for a number of configurations with moderate spins,
making the test an extremely deep probe of any possible
deviation from BBH nature. These results show how LISA
can be a very sensitive probe of fundamental physics.
Possible constraints on BH mimickers.—Since boson

stars can have κ between ∼10 and 150 [28], binary systems
of boson stars may have κs in the range of ∼10–150. This
allowed range lies well within the reach of the proposed test.
Recently, for slowly rotating thin shell gravastars, Ref. [29]
showed that the spin-induced quadrupole can take a wide
range of values depending on the specifics of the model
(see Fig. 7 of Ref. [29]). This range includes κ ¼ 1, the BH
value, too. Indeed, if κGS ¼ 1, our test will not be able to
distinguish it from a BH. Except for this very fine-tuned
scenario, the projected bounds from the proposed test might
significantly help to constrain the allowed parameter space
of gravastars and can influence the theoretical developments
in the field. The details of the bounds possible on specific
BH mimicker models will be reported elsewhere [47].
We note that the proposed test may not be very sensitive in

distinguishing a BH from a BH mimicker in a NSBH
system. This is because the neutron stars are expected to
have small spins (≤0.05) for which spin-induced quadrupole

FIG. 2. Two-dimensional error contours indicating the measur-
ability ofκs in the χ1–χ2 plane for two representativebinary systems:
ð5; 4ÞM⊙ (top panel) and ð10; 9ÞM⊙ (bottom panel) for advanced
LIGO sensitivity. The inclination angle of the binary is chosen to
a value of π=3, and the source is located and oriented in such a
way that it produces a signal-to-noise ratio of 10 at the detector.

FIG. 3. Projected constraints from GW observations of
SMBBH mergers by the LISA detector as a function of the
component spins for two representative SMBBH configurations
ð5 × 106; 106ÞM⊙ (top panel) and ð107; 106ÞM⊙ (bottom panel)
located at 3 Gpc. The inclination angle of the binary is chosen to a
value of π=3.
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would be very small. Moreover, since NSs are expected to
have κ value in the range of 2–14, very accurate estimation of
the κ parameters of both the binary components is necessary
to make the above distinction. This may be possible only
with the future generation of GW detectors.
There are some effects which can potentially contami-

nate the effectiveness of the proposed test. Because the
compact objects in binaries are, strictly speaking, not
isolated, the no-hair conjecture holds only approximately
due to which there can be systematic effects which may
affect the test (see Ref. [48] for a discussion on this aspect).
Further, if the BHs are charged, then the resulting values of
κ will be offset from the Kerr value. Lastly, the choice of
upper cutoff frequency may be different from ours if the
object has structure and, hence, can cause systematic errors
in our estimates. These issues need more careful exami-
nation which will be carried out in the future.
We conclude by noting that once implemented in a

Bayesian framework, this proposal can be used to represent
every detected compact binary system as contours in the
κ1 − κ2 space. Using multiple observations, the joint poste-
riors can tighten the bounds from this proposed null test,
potentially constraining the parameter space allowed for non-
BH compact objects. Inclusion of precessional features in the
waveform and incorporating this effect into effective one
body waveforms or phenomenological waveforms, which
capture merger and ringdown phases as well, are likely to
yield tighter constraints and will be explored in the future.
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