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We propose the use of a quantum thermal machine for low-temperature thermometry. A hot thermal
reservoir coupled to the machine allows for simultaneously cooling the sample while determining its
temperature without knowing the model-dependent coupling constants. In its most simple form, the
proposed scheme works for all thermal machines that perform at Otto efficiency and can reach Carnot
efficiency.We consider a circuit QED implementation that allows for precise thermometry down to∼15 mK
with realistic parameters. Based on the quantum Fisher information, this is close to the optimal achievable
performance. This implementation demonstrates that our proposal is particularly promising in systems
where thermalization between different components of an experimental setup cannot be guaranteed.

DOI: 10.1103/PhysRevLett.119.090603

Introduction.—Accurate sensing and measuring of tem-
perature is of crucial importance throughout natural science
and technology. Increased capabilities of control and
imaging on smaller and smaller scales have led to the
need for precise thermometry down to millikelvin temper-
atures at submicron scales. Conventional techniques are not
applicable in this regime, resulting in the development of a
broad range of new methods over the last decade [1]. Many
of these employ probes that are so small that quantum
effects become relevant in their design and sensing capa-
bilities, e.g., quantum dots [2–4], nitrogen-vacancy centers
in diamond [5–7], superconducting quantum interference
devices [8], and even biomolecules [9]. At the same time,
the study of thermal processes in the quantum regime has
recently seen increased interest fueled by tools developed
in quantum information theory [10,11]. This approach has
led to novel insights into the limitations of measuring cold
temperatures posed by quantum theory [12–16], showing
that coherence can be beneficial for low-temperature
thermometry [12,17–20].
In a standard approach to thermometry, a probe is

brought into thermal contact with the sample and the
system is allowed to equilibrate [3,4]. The temperature is
then read out through some observable on the probe whose
relation to the temperature is known. The measurement can
possibly be improved by letting the probe interact with the
sample for a finite time only, making use of the transient
dynamics [17,21], or by increasing the coupling strength
between sample and probe [22]. Both of these approaches
lead to a nonequilibrium state for the probe. Another
approach to thermometry, which is employed to measure
electronic temperatures, makes use of a voltage bias that
creates an out-of-equilibrium situation. The temperature
can then be determined through the current-voltage char-
acteristics [23–25]. We note that these strategies generally
lead to unwanted heating of the sample.

In this Letter, we connect thermometry to quantum
thermal machines. Such machines are extensively studied
to investigate fundamental as well as practical aspects of
quantum thermodynamics [10,26–29]. By construction,
these machines constitute out-of-equilibrium systems
including a temperature gradient. Here we consider a
quantum refrigerator to simultaneously cool the sample

FIG. 1. Sketch of the thermometer. In order to measure the
temperature of the cold bath, a quantum thermal machine is
operated as a refrigerator, inducing a heat current from the cold
bath to the hot bath. This requires energy from the work source
W. The hot temperature is then increased until the machine
reaches the Carnot point where its power consumption and the
heat flows vanish (i.e., P ¼ Jc ¼ Jh ¼ 0). For machines that
perform with a well-known efficiency (e.g., the Otto efficiency
η ¼ 1 − Ωc=Ωh), the cold temperature can then be deduced from
the hot temperature through the relation η ¼ ηC ¼ 1 − Tc=Th,
without the need of knowing any model-dependent coupling
constants. In this way, a low precision measurement of a hot
temperature is converted into a high precision measurement of a
low temperature. Operating the thermal machine as a refrigerator
avoids any heating of the cold bath.
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and estimate its temperature. This way, the proposed
thermometer does not induce any heating of the sample,
even if it is at the coldest temperature that is experimentally
available. Our proposal thus makes use of a thermal bias to
create an out-of-equilibrium situation that is favorable for
thermometry. This idea goes back to Thomson (Lord
Kelvin), who considered the use of a Carnot engine to
determine an absolute temperature scale [30] (see also
Ref. [31]). Note that albeit the thermal bias, the sample is
assumed to remain in local equilibrium throughout the
measurement.
The main idea is illustrated in Fig. 1. The sample to be

measured is a thermal bath at a cold temperature Tc.
Through a small quantum system (the machine), the sample
is coupled to another bath at a higher temperature Th and an
external power source (which, in principle, could be
provided by a third thermal bath [32–35]). Note that this
setup can operate either as a refrigerator, with the power
source driving a heat flow from the cold to the hot bath, or
as a heat engine, where work is generated using a heat flow
from the hot to the cold bath [27,36–41]. Since we are
interested in determining Tc, the whole setup, apart from
the cold bath, should be considered as the thermometer. By
operating the machine as a refrigerator, the sample will be
cooled during the measurement of Tc, avoiding any
undesirable heating. Furthermore, by approaching the
Carnot point, where the machine approaches reversibility,
the need for knowledge of the coupling constants can be
eliminated, just as for thermalizing thermometry. We note
that some knowledge of the hot bath temperature is
required for our scheme. However, the cold temperature
can be determined with high precision even if the hot
temperature measurement is noisy. Our scheme can thus be
seen as a method to turn an uncertain measurement of warm
temperatures into precise measurements of cold temper-
atures working similarly to a Wheatstone bridge, where
resistors of known resistances are used to determine an
unknown resistance.
The rest of this Letter is structured as follows. After

describing the working principle of the proposed thermom-
eter in more detail, we discuss an implementation in a
circuit QED architecture, which allows for precise ther-
mometry of a microwave resonator down to ∼15 mK using
realistic parameters. Finally, we investigate the precision of
the thermometer using the quantum Fisher informa-
tion (QFI).
Scheme.—We now turn to a more detailed description of

our thermometer. The thermal bias and the power source
induce energy flows denoted by Jα (heat flow into bath α)
and P (power consumption; see Fig. 1). The power
consumed by the machine is in general a function of the
temperatures as well as the model-dependent parameters.
Inverting this relationship, the cold temperature can be
written as Tc ¼ fðP; ThÞ. Here, f might have a compli-
cated dependence on the model-dependent parameters.

However, the relation simplifies for machines that perform
at the Otto efficiency and exhibit a Carnot point [42]. When
the machine is operated as a heat engine, the efficiency is
defined as η ¼ P=Jh. The Otto efficiency is given by η ¼
1 − Ωc=Ωh where Ωc, Ωh are frequencies that depend on
the architecture of the machine (see Fig. 2). For thermal
machines that exhibit a Carnot point, setting the frequen-
cies such that the efficiency is equal to the Carnot
efficiency, ηC ¼ 1 − Tc=Th, results in vanishing energy
flows. Examples of thermal machines that operate at the
Otto efficiency and exhibit a Carnot point are discussed in
Refs. [28,43–48]. We note that whenever the frequencies
and temperatures are such that η > ηC, the machine
operates as a refrigerator. At the Carnot point, we find
the simple relation

Tc ¼
Ωc

Ωh
Th; ð1Þ

implying that fðP ¼ 0; ThÞ ¼ ThΩc=Ωh is independent
of any coupling constants. The above relation is a key
ingredient for the proposed thermometer [see Supplemental
Material for a discussion on imperfections that prevent
Eq. (1) [49] ]. In order to reach the Carnot point, one can
either modify the frequencies Ωα or the temperature Th
associated with the thermometer. Here we focus on the case
where the frequencies remain fixed but one has some
control over Th > Tc. The cold temperature can then be
determined using the following strategy (see Fig. 3).
(1) Initiate the machine to act as a refrigerator, i.e.,
Th < TcΩh=Ωc, and monitor P. (2) Increase Th until
P ¼ 0 is reached. (3) Measure Th. (4) Determine Tc using
Eq. (1).
In this scheme, two quantities are measured to determine

Tc: The power consumption P and the hot temperature Th.
Both of these measurements are accompanied by errors,
ΔP and ΔTh. Simple error propagation yields (assuming
independent errors)

FIG. 2. Circuit QED implementation of the thermometer. Two
harmonic oscillators with frequencies Ωh and Ωc are coupled to
thermal baths at temperatures Tc and Th, respectively, and to each
other through a Josephson junction. The external bias voltage V
ensures that the cold bath is being cooled while determining Tc.
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ΔTc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂f
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2
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ðΔThÞ2
s

: ð2Þ

The error thus depends on the derivatives of f, which
generally depend on model-specific parameters. Note
however that ∂Th

fjP¼0 ¼ Ωc=Ωh, implying that the error
induced by the measurement of Th only depends on the
frequencies. Any uncertainty in the measurement of Th can
thus be compensated by increasing the ratio Ωh=Ωc and
thus does not represent a fundamental limit.
Circuit QED implementation.—We now turn to an

implementation of these ideas, considering the heat engine
proposed in Ref. [47] and sketched in Fig. 2. In this
machine, the quantum system consists of two LC oscil-
lators with frequencies Ωc and Ωh coupled to each other
through a Josephson junction. Such a system has recently
been implemented experimentally, investigating the emis-
sion of nonclassical radiation [54]. See also Refs. [55–57]
for related experiments. Each oscillator is coupled indi-
vidually to a heat bath, one of which is the sample at
temperature Tc, and the power source is provided by an
external voltage bias V. We note that a similar setup
(without any temperature bias however) has been consid-
ered for thermometry in Ref. [58]. The Hamiltonian
describing the system reads (in a rotating frame)

Ĥ ¼ EJ

2
ðâ†hÂhÂcâc þ H:c:Þ; ð3Þ

where EJ is the Josephson energy, âα annihilates a photon
in the oscillator with frequency Ωα, and the nonlinear
operators Âα are defined as

Âα ¼ 2λαe−2λ
2
α

X∞

nα¼0

Lð1Þ
nα ð4λ2αÞ
nα þ 1

jnαihnαj; ð4Þ

with LðkÞ
n ðxÞ denoting the generalized Laguerre polyno-

mials and where we defined the Fock states â†αâαjnαi ¼
nαjnαi. We note that Eq. (3) is derived using a rotating wave
approximation that holds under the resonance condition
2eV ¼ Ωh −Ωc (for details, see Ref. [47]).
The evolution of the system in contact with the thermal

baths is captured by a local Lindblad master equation

∂tρ̂ ¼ −i½Ĥ; ρ̂� þ κhðnhB þ 1ÞD½âh�ρ̂þ κhnhBD½â†h�ρ̂
þ κcðncB þ 1ÞD½âc�ρ̂þ κhncBD½â†c�ρ̂; ð5Þ

where we defined D½Â�ρ̂ ¼ Â ρ̂ Â† − fÂ†Â; ρ̂g=2, κα
denotes the energy damping rate associated with the bath
α, and nαB ¼ ½expðΩα=kBTαÞ − 1�−1 is the corresponding
occupation number. In accordance with existing theory [59]
and experiment [57], we neglect voltage fluctuations
arising from a low-frequency environment. We note that
the local master equation, Eq. (5), was recently shown
to capture the thermodynamics of the considered heat
engine very well [60,61]. Alternatively one may also
consider a master equation based on a Floquet formalism;
see Refs. [62–64].
The power consumption of the machine is P ¼ IV,

where I ¼ hÎi is the (dc) electrical current with the current
operator

Î ¼ −
Ic
2i
ðâ†cÂcÂhâh − H:c:Þ; ð6Þ

and Ic ¼ 2eEJ is the critical current. The mean heat
currents are defined as

(a) (b)

FIG. 3. Performance of a circuit QED implementation. (a) Charge current as a function of the hot temperature Th for fixed
Tc ¼ 15 mK. The refrigerator is initiated at Th below the Carnot point (dotted circle), leading to cooling of the cold bath. Th is then
increased until the current vanishes (solid circle). This point can only be determined up to a certain error ΔI that induces an uncertainty
in the final Th (shaded area). (b) Error in the temperature estimation, Eq. (2). Measurement errors of ΔI ¼ 0.3 pA and ΔTh ¼ 10 mK
lead to ΔTc < 2 mK down to temperatures of 15 mK. Blue (solid) lines are numeric solutions; green (dashed) lines are obtained
analytically using a simplified model [49]. Parameters: Ωh ¼ 2π × 8.5 GHz, Ωc ¼ 2π × 1 GHz, κh ¼ κc ¼ 2π × 0.06 GHz,
EJ ¼ 2π × 0.2 GHz, λh ¼ λc ¼ 0.3.
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Jα ¼ Ωακαðhn̂αi − nαBÞ: ð7Þ

All averages are taken with respect to the steady-state
solution of Eq. (5). For a more detailed discussion on the
working principle of the heat engine and the involved
approximations, we refer the reader to Ref. [47]. It can be
shown that this machine does perform at the Otto efficiency
and can reach the Carnot efficiency at vanishing power.
Furthermore, a tunable hot temperature could be imple-
mented by heating one of the LC oscillators using a
microwave antenna. Therefore, this circuit QED engine
exhibits all the features required to perform thermometry as
discussed above.
Figure 3(a) shows the electrical current as a function of

the hot temperature and sketches the scheme for measuring
Tc. The error of the measurement is plotted in Fig. 3(b). We
find a precision of ΔTc ≲ 2 mK for temperatures down to
Tc ∼ 15 mK. In accordance with Ref. [47], we find good
quantitative agreement with an approximate model
obtained from Eq. (3) by replacing the nonlinear operators
Âα by constants times the identity [49]. This model can be
solved analytically and is used below to estimate the
performance of our scheme using the quantum Fisher
information. We note that instead of the electrical current,
one could also measure the heat currents to determine the
Carnot point.
Throughout this paper, we consider the thermometer as a

device to determine the temperature of the cold bath.
However, in this particular implementation, the thermom-
eter measures the temperature of the microwave mode with
frequency Ωc (see Supplemental Material for a discussion
where this temperature is not equal to the bath temperature
[49]). In situations where thermalization between different
components of an experimental setup is difficult to achieve,
our proposal thus provides a promising route to determine
the physically relevant temperature. Furthermore, the pre-
cision obtained in our proposal compares well with
electronic out-of-equilibrium thermometry [24].
Quantum Fisher information.—As already mentioned,

the measurement error resulting from the hot temperature
measurement is not of a fundamental nature since we can,
in principle, reduce it by increasing Ωh=Ωc. In order to
understand how well the current measurement is doing in
terms of temperature estimation, we turn to the quantum
Fisher information.
The steady-state solution of Eq. (5) defines a family of

states as a function of Tc. The QFI with respect to Tc is a
measure of the sensitivity of the state to changes in this
parameter [65]. Through the quantum Cramer-Rao bound,
it provides a lower bound on the mean-squared error in
estimating Tc from any possible measurement [66].
Specifically,

ðΔTcÞ2 ≥
1

νFTc

≡ 1

ν
ðΔTcÞ2QFI; ð8Þ

where FTc
is the QFI with respect to Tc and ν is the number

of independent repetitions of the experiment. The bound is
relevant (and can be saturated) in the local estimation
regime, where the prior on the estimated parameter is
narrow and many repetitions are performed. In the same
regime, for measuring a specific observable Ô, the attain-
able precision is given by the error propagation formula
ðΔTcÞ2Ô ≡ ðΔÔÞ2ρ=j∂Tc

hÔiρj2. Hence, by substituting the

current operator for Ô and comparing ðΔTcÞQFI and ðΔTcÞÎ
evaluated in the steady state at the Carnot point, we can get
an idea of how close the current measurement is to being
optimal. Note that this neglects any errors in other
parameters as well as the fact that our strategy is based
on continuous measurements rather than projective mea-
surements. Although we should thus not expect this
calculation to give us the actual uncertainty obtained in
an experiment, it does tell us whether the current is a good
choice of observable for estimating Tc.
To perform the comparison, we first need to find the

steady-state solution of Eq. (5). This can be done analyti-
cally for the approximate model discussed in Supplemental
Material [49] yielding ðΔTcÞÎT ¼ αT2

c sinh ðΩc=2TcÞ=Ωc,
and ðΔTcÞQFI ¼ ðΔTcÞÎTβ=α, where the parameters α and β
depend on the coupling constants and are given in
Supplemental Material [49]. We see that the current-
measurement precision and the optimal precision from
the QFI have exactly the same functional behavior with
temperature and energy, but depend differently on the
coupling constants. For any choice of couplings, α ≥ β
such that ðΔTcÞÎT ≥ ðΔTcÞQFI. Both expressions are plot-
ted in Fig. 4. The reason that the current operator is a good
observable for determining Tc is ultimately due to the fact
that the current is very sensitive to the occupation number
in the oscillators. Although the occupation numbers depend
only very weakly on temperature at sufficiently low
temperatures, measuring occupation numbers is in many
scenarios still the optimal choice [67].

FIG. 4. Single-shot precision from a current measurement (blue
solid) and from the QFI (blue dashed) at the Carnot point, for the
simple model with oscillator frequencies and couplings given in
the caption of Fig. 3, and fitting parameter g ¼ EJ=8.
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The smallest possible value of α is 4
ffiffiffi
2

p
, attained for

κc ¼ κh ¼ 2g (where g is the interaction strength in the
approximate model). For the parameters used in Fig. 3,
α=4

ffiffiffi
2

p
≈ 1.02, and so the current measurement is close to

its best performance in this regime. Furthermore,
α=β ≈ 2.55; hence, it is also not far from the optimal
precision obtainable by any possible measurement. The

smallest possible value of α=β is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp

≈ 1.85; how-
ever, it is attained in the weak coupling limit κc → 0, where
no information about Tc can be extracted and both α and β
diverge.
Conclusion.—In conclusion, we investigated the use of

thermal machines as thermometers. The nonequilibrium
nature of the steady state in these systems allows for
simultaneously cooling the cold bath while determining its
temperature. Furthermore, our scheme only requires the
measurement of the power consumption and the hot
temperature, both of which do not require any projective
measurements on the quantum system which are difficult to
implement. For realistic parameters, an implementation in
circuit QED allows for precise thermometry (ΔTc ≲ 2 mK)
of a microwave resonator mode down to small temperatures
(Tc ∼ 15 mK). While lower values have been reported (see,
e.g., Ref. [24] where precise thermometry down to 6 mK
has been reported) our scheme is of particular interest when
thermalization between different components of an exper-
imental setup cannot be guaranteed and heating of the
sample has to be avoided. Our proposal can be readily
adapted to other architectures.
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