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We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine.
The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-
nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to
an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown
that the work output has two components: one that depends instantaneously on the level populations and
another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of
the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the
functional equivalence of such a device and a rf-SQUID flux qubit.
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Technology has evolved to the point where it is possible
to design and build mesoscopic machines and molecular
motors. Nature has already accomplished that, countless
molecular structures operate as engines to sustain life. The
most well known are the photosynthetic units [1], the light
sensors in the rhodopsin membrane [2], and various
molecular proton pumps. Moreover, experiments indicate
that nature may use coherences to improve the efficiency of
such processes—for instance, quantum coherences for light
harvesting in photosynthesis [1,3] and vibrational coher-
ences for phototransduction in visual reception [2,4]. There
is, likewise, a great interest to incorporate quantum
coherent dynamics into man-made nanomachines and
quantum engines—including quantum computers and
alike—for both fundamental research and technological
applications. Presently, superconducting (SC) circuits
based on Josephson junctions are amongst the most
promising to produce quantum engines of mesoscopic size
[5–8]. For the operation of quantum engines, the most
sensitive issues are the coupling with the external control,
the nonadiabatic effects caused by the finite time operation
[9–11], decoherence caused by interaction with the envi-
ronment, and energy fluctuations due to the smallness of
the device and the nonequilibrium operation regime
[12,13]. Fluctuation theorems based on time reversal
symmetry provide the theoretical basis to describe the
thermodynamics of small systems of both classical [14] and
quantum [15,16] nature, for they reconcile the apparent
irreversible arrow of time with the underlying reversible
microscopic laws.
The main application in the prospect for SC circuits is

quantum computation; therefore, such devices are generally
treated as qubits, or simply as artificial atoms. However, in
view of Landauer’s principle for energy consumption of
computation, SC-based logical circuits should also be
considered quantum engines, subject to energy and entropy
exchange. We investigate the properties of a pistonlike

quantum engine and explore its correspondence to
Josephson qubit circuits. The system consists of a quantum
working medium—for instance, an ideal quantum gas—
confined by a deformable double-quantum-well (DQW)
system that allows for tunneling. The quantum system is
driven by an external control parameter and undergoes a
finite time unitary process. Its full quantum-nonadiabatic
dynamics is solved for an arbitrary control protocol and
energy level structure. We examine the difference between
thermodynamic and microscopy reversibility, the quantum
content of a work stroke, and the origin of the inner friction
in quantum thermodynamic processes. The energy fluctua-
tions of the system during cyclic work strokes are analyzed
in terms of the quantum Bochkov-Kuzovlev-Jarzynski
work fluctuation formalism [14,17,18].
Model system.—Let us consider a quantum particle of

mass m dwelling in a DQW system where tunneling is
allowed between the wells. We assume that work can be
performed on the quantum system by changing the width of
one of the wells, like in a piston; different work protocols
can be considered for that matter as well. The Hamiltonian
of the system is therefore

H(x̂; λðtÞ) ¼ −
ℏ2

2m
d2

dx2
þ VLðx̂Þ þ VR(x̂; λðtÞ); ð1Þ

where VLðx̂Þ is the potential of the static quantum well, on
the left (L). The right-side (R) quantum well is coupled to
the work repository through the parameter λðtÞ≡ dRðtÞ that
represents its width. The deformable potential is written in
terms of Heaviside functions ΘðxÞ as

VR(x̂; λðtÞ) ¼ V½Θ(x̂ − λðtÞ) − Θðx̂Þ�: ð2Þ

The complete adiabatic basis is comprised of all
the instantaneous eigenstates of the Hamiltonian,
HðλtÞjϕnðλtÞi ¼ EnðλtÞjϕnðλtÞi, where λðtÞ≡ λt, including
the states of the continuum. In the following we will
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consider a unitary transformation, driven by the external
parameter λðtÞ, that changes the Hamiltonian from an initial
configuration Hi ¼ H½λi� to a final Hf ¼ H½λf� in a finite
time interval τ. The process is defined by the time variation
of the parameter λðtÞ and it is described in Fig. 1. The
mechanism is analogous to the behavior of rf-SQUID flux
qubits [19,20], although the only necessary ingredient is the
Landau-Zener transitions.
During a work stroke driven by λðtÞ, the unitary evolu-

tion of a given quantum state jΨðtÞi ¼ P
nCnðtÞjϕnðλtÞi,

written in the representation of the adiabatic eigenstates, is
given by the time-dependent Schrödinger equation (TDSE),
which assumes the form

dCn

dt
þ
X
m

Cmhϕnj _ϕmi ¼ −
i
ℏ
EnCn: ð3Þ

Thenonadiabatic coupling term hϕnj _ϕmi in Eq. (3) describes
the transitions amongst the adiabatic eigenstates due to the
finite time process. We solve Eq. (3) by means of a general
method, also applied for nonadiabatic simulations of excited
state quantum dynamics of molecular systems [21,22].
Herein time is discretized in small slices δt, so that
tj ¼ jδt, with δt → 0, which is ensured by verifying that
simulations have converged. The instantaneous eigenvalue

equation isHðjÞjϕðjÞ
n i ¼ EðjÞ

n jϕðjÞ
n i. Thus for a vanishing time

slice δt the corresponding Hamiltonian HðjÞ ≡HðjδtÞ can
be assumed constant. Therefore, within that time slice, the
adiabatic time-evolution operator assumes the simple form

UADjΨðtjÞi ¼
X
n

CnðtjÞ exp ½−iEðjÞ
n δt=ℏ�jϕðjÞ

n i: ð4Þ

Operator UAD does not describe nonadiabatic effects. To
take that into account we make use of the nonadiabatic
coupling term

UNA ¼
X
n;m

Ωn;mjϕðjþ1Þ
m ihϕðjÞ

n j; ð5Þ

where

Ωn;m ¼ hϕðjþ1Þ
m jϕðjÞ

n i ≈ δn;m þ h _ϕðjÞ
m jϕðjÞ

n iδt: ð6Þ

The term Ωn;m can be calculated directly from Eq. (6),
by using the adiabatic eigenstates at successive time
slices. Therefore, the overall time evolution operator
U ¼ T exp ½−i R τ

0 H½λðtÞ�dt=ℏ�, where T stands for the
time-ordering operator, becomes

jΨðtjþ1Þi ¼ ½Uðtjþ1; tjÞ…Uðt2; t1ÞUðt1; t0Þ�jΨðt0Þi; ð7Þ

with Uðtjþ1; tjÞ ¼ UNAðtjþ1; tjÞUADðtjÞ. To analyze the
reversibility properties of the system, we consider a work
stroke consisting of an integer number of expansion-and-
compression cycles, with the cycles performed at the
frequency ωres

n ≡minfjER
n − EL

n jg=ℏ. For our system, it
has been observed that this frequency maximizes the
quantum coherence effects during the Landau-Zener (LZ)
passage; there are, nonetheless, various definitions of
transition times in the LZmodel [23]. For a nonautonomous
quantum system [16], such as the one discussed here,
the microreversibility can be observed by performing the
forward work stroke (expansion) from t ¼ 0 to tf ¼ τ=2
with the unitary operator Uðτ=2; 0Þ, then reverting
all the momenta with the time-reversal operator (R) as
Ψðτ=2Þ → RΨðτ=2Þ ¼ Ψ�ðτ=2Þ and, finally, performing
the reverse work stroke (compression) given by
Uðτ; τ=2Þ ¼ R†Uðτ=2; 0ÞR. That is simply the expan-
sion-and-compression cycle that comprises a completework
stroke. The control protocol for nonautonomous reversi-
bilitymust obey the condition λRðtÞ ¼ λFðτ=2 − tÞ, whereR
andF stand for reverse and forward processes.An analogous
approach to test time reversal symmetry has been discussed
in detail for charge qubit systems [24].
Figures 2(a) and 2(b) show the microreversibility effect

for a particle starting at the first (n ¼ 1) and second (n ¼ 2)
levels of the left QW, respectively. We plotted the particle
occupation on the left, PL

n ¼ R
0
−∞ jΨðxÞj2dx, and on the

right, PR
n ¼ R

∞
0 jΨðxÞj2dx, which is equivalent to the

diabatic state representation. Stueckelberg oscillations are
clearly observed in the PL

n and PR
n curves after each LZ

passage, which have also been observed in mesoscopic flux
[25,26] and charge [27] SC qubits for analogous control
protocols. The dashed line shows the microreversibility
effect whereas the continuous line shows evolution without
time reversal during the same cycle. For a quantum
adiabatic process (ω ≪ ωres) both dynamics coincide.
The autocorrelation function AðtÞ ¼ hΨð0ÞjΨðtÞi (see
Supplemental Material [28]) corroborates the effect. The
irreversible character of the process is caused by the
nonadiabatic transitions that accumulate during LZ pas-
sages, so that after a complete expansion-compression
cycle the system moves away from the initial state.
Work exchange.—Assume that the quantum system has

been thermalized with a thermal reservoir at temperature T.
The first measurement of Hðλ0Þ is performed, with results
Ekðλ0Þ. Therefore the system is described by the density
matrix

FIG. 1. (a) Energy level scheme of a double quantum well
(DQW) system. The left well (L) remains static while the right
one (R) exchanges energy with a work repository. There is a
quasicontinuum of energy states above the wells. (b) Dynamics of
the adiabatic energy levels for the DQW system, EnðλtÞ. For
dL ¼ dR, Landau-Zener (LZ) gaps arise, as shown in the inset.
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ρ̂ð0Þ ¼
X
k

e−βEkðλ0Þ

Zðλ0Þ
jϕkðλ0Þihϕkðλ0Þj; ð8Þ

where β ¼ 1=kBT, Zðλ0Þ is the partition function and
pkðλ0Þ≡ e−βEkðλ0Þ=Zðλ0Þ are the Gibbs ensemble proba-
bilities of the unperturbed system. The system is then
isolated from the heat reservoir and undergoes work strokes
described by the unitary transformation Uðt; 0Þ. Therefore,
pkðtÞ ¼ pkðλ0Þ and only the quantum states evolve
in time to yield ρ̂ðtÞ ¼ P

npkðλ0ÞjΨkðtÞihΨkðtÞj≡P
kpkðλ0Þρ̂kðtÞ. Thus, to study the quantum properties

we focus on the matrix ρ̂kðtÞ before taking the
ensemble average. For the quantum state jΨkðtÞi ¼
Uðt; 0Þjϕkðλ0Þi ¼

P
nC

k
nðtÞjϕnðλtÞi, in the representation

of the adiabatic eigenstates, we have ρkn;mðtÞ ¼
Ck
nðtÞ½Ck

mðtÞ��. The average energy of the quantum system
is given by EkðtÞ ¼ Tr½ρkðtÞHðtÞ� ¼ P

njCk
nðtÞj2EnðtÞ;

notice that the work stroke is a nonequilibrium process.
If the isolated quantum system undergoes a finite time
process, driven by the time-dependent Hamiltonian
H½λðtÞ�, within the time interval t ∈ ½0; τ�, the change of
energy is

ΔEk ¼
Z

τ

0

fTr½_ρkðtÞHðtÞ� þ Tr½ρkðtÞ _HðtÞ�gdt: ð9Þ

However, for a work stroke that is carried out on a thermally
isolated system, the energy exchanged with the bath (heat)
is zero. In fact,Qk ¼

R
τ
0 Tr½_ρkðtÞHðtÞ�dt ¼ 0, which can be

demonstrated by substituting _ρkðtÞ ¼ ði=ℏÞ½ρkðtÞ;HðtÞ�
into the previous equation. Therefore, we have for the
work stroke on a thermally isolated quantum system

_Ek ¼ _Wk ¼ Tr½ρkðtÞ _HðtÞ� ð10Þ

¼ _Wpop þ _Wcoh ¼
X
n

ðPk
n
_En þ _Pk

nEnÞ; ð11Þ

where Pk
n ¼ jCk

nðtÞj2. Note thatW, in Eq. (11), denotes the
work done on the system. Thus by making use of Eq. (3) in
Eq. (11), the work exchanged with the quantum system
during a finite time process can be written as

Wk ¼
Z

τ

0

�X
n

Pk
n
∂En

∂λ þ 2
X
n>m

Reðρkn;mÞ

× hϕnj∂λϕmiðEm − EnÞ
�
_λdt; ð12Þ

where _Wcoh ¼
P

n
_Pk
nEn is explicitly written, with

∂λ ≡ ∂=∂λ. The first term on the right-hand side of
Eq. (12) is herein denoted Wpop because it depends on
the populations Pk

nðtÞ of the adiabatic states; it could also be
associated with incoherent work for systems in equilibrium
with a thermal bath. On the other hand, the term Wcoh is
nonzero only if there are quantum coherences in the
working fluid, as evinced by the off-diagonal elements
ρkn;m. In addition, this term also depends on the rate of the
work stroke through the nonadiabatic coupling term
hϕnj _ϕmi. For instance, if work is performed in the quasi-
static (quantum-adiabatic) regime this term vanishes.
The term _Wcoh is associated in some studies with the

notion of work carried out against an inner quantum friction
[9–11]. If a working medium is not completely controllable
by the external field, thus ½Hðtþ δtÞ;HðtÞ� ≠ 0 and quan-
tum coherences arise [12,29,30] (see Supplemental Material
[28]). It has also been pointed out [9] that performance
characteristics for such a system can be described as a
quantum engine subject to a phenomenological inner fric-
tion. We determine the reaction force produced on the
movable wall (control parameter) due to the creation of
quantum coherences in the working medium and, then,
calculate the work performed against this force. The force
exchanged between the quantum system and the work
repository due to _Wcoh is obtained from Eq. (12) as

F k
coh ¼ 2

X
n>m

Reðρkn;mÞhϕnj∂λϕmiðEm − EnÞ: ð13Þ

It can be calculated analytically for the present model by
using the Hellmann-Feynman theorem on ∂λhϕnjHjϕmi,

hϕnj∂λHjϕmi ¼ ∂λEmðλÞδn;m þ ðEm − EnÞdn;m; ð14Þ
where dn;m ≡ hϕnj∂λϕmi ¼ −hϕmj∂λϕni. The first term on
the right side of Eq. (14) describes the adiabatic force
exchanged with the work repository for work strokes
performed in the quantum-adiabatic regime,ω ≪ ωres, while
the second term is associated with the population transfer
between adiabatic eigenstates. The former constitute diago-
nal matrix elements whereas the later give rise to off-
diagonal matrix elements; notice that dn;n ¼ 0, for
∂λhϕnðλÞjϕnðλÞi ¼ 0. We shall focus on the nonadia-
batic off-diagonal terms that yield dn;m ¼ hϕnj∂λϕmi ¼
hϕnj∂λHjϕmi=ðEm − EnÞ, for n ≠ m. Substitution of dn;m

FIG. 2. Particle occupations PL
n ¼ R

0
−∞ jΨðxÞj2dx and PR

n ¼R∞
0 jΨðxÞj2dx for the left-side (red) and right-side (blue) quantum
wells during a single expansion-compression stroke. Solid lines
represent evolution without time reversal and dashed lines
describe the microreversibility effect. The effect is shown for
the first (n ¼ 1) (a) and second (n ¼ 2) (b) LZ anticrossings.
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into Eq. (13) yields F k
coh ¼ 2

P
n>mReðρkn;mÞhϕnj∂λHjϕmi

and then, by making use of Eqs. (1) and (2), we have
hϕnj∂λHjϕmi ¼ −VϕnðλÞϕmðλÞ, where, in the present
model, λ stands for the position of the movable wall (or
width of the right-side quantum well). Also notice that
ϕnðx; λtÞ and ϕmðx; λtÞ are real eigenfunctions of the
Hamiltonian H(x̂; λðtÞ). Therefore,

F k
coh ¼ −2V

X
n>m

Reðρkn;mÞϕnðλtÞϕmðλtÞ: ð15Þ

The average nonadiabatic reaction force acting on thewall of
the quantum well is calculated with the Gibbs ensemble
weights asF coh ¼

P
kpkF k

coh. Note that the force [Eq. (15)]
is due to quantum coherences built in the working medium
by the work stroke, _Wcoh ¼ F coh

_λ.
Two-level systems.—Let us analyze the work performed

at the lowest Landau-Zener transition. We consider an
expansion-compression work stroke by which the width of
the movable quantum well, dR ≡ λ, changes according to
dRðtÞ ¼ dL½1 − cos ðωtÞ=2�. Figures 3(a) and 3(b) describe
a work stroke performed at the frequency ωres

n¼1 analogous
experiments are performed with SC flux qubits [25,26] by
applying a radio frequency (rf) field to drive the qubit back
and forth through avoided crossings, and likewise with
charge qubits driven by rf gate charge sweeps [27]. Starting
from the ground state jϕL

1 i, the LZ passage puts the system
in a quantum coherent state. However, the subsequent
compression does not restore the system to its original state.
The average energy E does not follow the adiabatic path
either, which is described in Fig. 3(a) by the evolution of
the adiabatic energies EL;R

n¼1 (red and blue curves)—the
behavior for quasistatic (adiabatic) and sudden (nonadia-
batic) processes are presented in the Supplemental Material
[28]. For the resonant regime, there is considerable power
consumed to produce quantum coherences, which is

associated with the phenomenological inner friction. As
a consequence, Wcoh > 0 and jΔEj < jWpopj; thus, the
efficiency for work output is decreased during the expan-
sion stroke, and partially restored during the compression;
herein work output means the total work performed during
each cycle. Figure 3(b) shows the behavior of the power
exchanged during the stroke, _W ¼ _Wpop þ _Wcoh. Notice

that _Wcoh changes sign for expansion and compression.
For the sake of comparison we plotted together _Wcoh ¼
_E − _Wpop (black dashed line) and F coh

_λ (magenta line),
with F coh given by Eq. (15).
Work fluctuations.—An important issue for mesoscopic

engines, both quantum and classical, is the work fluctuation
distribution after a sequence of driving cycles [31]. Assume
that the system is described at t ¼ 0 by the thermalized
density matrix given by Eq. (8). Then, during the work
stroke it is isolated from the thermal bath (or put into a
weak coupling environment), so that the unitary trans-
formation U holds. Therefore, we can use [15,16]

PðWÞ ¼
X
n;m

δðW − ½Em − En�ÞjCn
mðτÞj2

e−βEnðλ0Þ
Zðλ0Þ

ð16Þ

to calculate the work fluctuation distribution. For the cyclic
expansion-compression stroke HðλτÞ ¼ Hðλ0Þ; therefore,
the adiabatic basis set is the same at λ0 and at λτ. Thus
Eq. (16) simplifies to

PðWÞ ¼ 1

Zðλ0Þ
X
n;m

δðW − ½Em − En�ÞjCn
mðτÞj2e−βEnðλ0Þ:

ð17Þ
For a series of periodic expansion-compression
cycles, we verify that the work distribution satisfies
the Jarzynski-Bochkov-Kuzovlev equality he−βWi ¼R
PðWÞ exp ð−βWÞdW ¼ 1. Notice that our definition

of work, dHðλtÞ=dt ¼ Fdλ=dt, which is more appropriate
for describing an engine, corresponds to the framework
used by Bochkov and Kuzovlev [18] in their original paper.
The Supplemental Material [28] presents PðWÞ, obtained
with Eq. (17) for various initial temperatures after 20
expansion-compression cycles.
Equivalence with flux qubit.—To conclude we consider

the functional equivalence of the quantum piston engine
and a rf-SQUID flux qubit. The concept is herein presented
for a symmetric double quantum well system [Fig. 4(a)],
where the focus is on the doublet formed by the symmetric
(S) and antisymmetric (AS) states that constitute the lowest
2-level system. The model system is equivalent to a flux
qubit biased by an external static magnetic flux
Φext ¼ Φ0=2, [19,20] coupled to an electromagnetic
(em) resonator [5,32] that drives the qubit with a rf, as
shown in Fig. 4(b). Let us consider that one of the walls
oscillates with a small amplitude (1% of the QW width) at
the resonant frequency ω ¼ ω01 of the doublet, then work

FIG. 3. (a) Energy variation of the quantum system during a
single expansion-compression work stroke: ΔE ¼ W ¼
Wpop þWcoh. Also shown for guidance, the time evolution of
the adiabatic energies ER

1 (blue) and EL
1 (red). Process carried out

in resonance with the first (n ¼ 1) LZ anticrossing. (b) Power
exchanged with the work repository. The blue line is F cohdλ=dt
(magenta line), with F coh given by Eq. (15).
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is done on the system in two ways [Fig. 4(c)]: a classiclike
work component Wpop ¼

P
n

R
Pn

_Endt that follows the

driving with ω01 (blue dot-dashed line), and work Wcoh ¼R
F coh

_λdt that produces coherent energy that oscillates
with the Rabi frequency Ω ¼ γ=ℏ (green dashed line),
where γ is associated with the strength of the LZ transition.
The coherent energy (Wcoh) could, in principle, be trans-
ferred to a second em resonator coupled to the SQUID and
measured with a dc-SQUID magnetometer, whereby the
corresponding F coh could be obtained. We then analyze
how the quantum piston is affected by extrinsic dephasing
(relaxation time T�

2), such as noise from the leads that are
coupled to read-out devices or used to apply flux or charge
biases. Thus, we apply a classical Gaussian noise to the
driving parameter, _λðtÞ ¼ ðλ0ω01=100Þ cos ½(ω01 þ φðtÞ)t�,
with noise distribution PðφÞ ∝ exp ð−φ2=2ω2

01Þ, then, an
ensemble average over 78 trajectories is carried out. We
observe that this dephasing in the driving decreases the
amplitude of the quantum coherent signal, which decays
exponentially with Γ�

2 ≈ 0.03Ω [Fig. 4(d)].
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FIG. 4. (a) Symmetric double quantum well (DQW) system and
the doublet formed by symmetric (S) and antisymmetric (AS)
states (well width is 100 Å, barrier width is 45 Å, potential height
is 250 meV, ℏω01 ¼ 1.7253 meV). (b) Scheme of a rf-SQUID
flux qubit. (c) Work exchange ΔE ¼ Wpop þWcoh without
dephasing noise. (d) Work exchange with dephasing noise.
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