
Dynamic Wrinkling and Strengthening of an Elastic Filament in a Viscous Fluid

Julien Chopin*

Laboratoire Sciences et Ingénierie de la Matière Molle, PSL Research University,
UPMC Univ Paris 06, ESPCI Paris, CNRS, 10 Rue Vauquelin, 75231 Paris Cedex 05, France

Moumita Dasgupta† and Arshad Kudrolli‡

Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
(Received 10 February 2017; revised manuscript received 19 May 2017; published 24 August 2017)

We investigate the wrinkling dynamics of an elastic filament immersed in a viscous fluid submitted to
compression at a finite rate with experiments and by combining geometric nonlinearities, elasticity, and
slender body theory. The drag induces a dynamic lateral reinforcement of the filament leading to growth of
wrinkles that coarsen over time. We discover a new dynamical regime characterized by a time scale with a
nontrivial dependence on the loading rate, where the growth of the instability is superexponential and the
wave number is an increasing function of the loading rate. We find that this time scale can be interpreted as
the characteristic time over which the filament transitions from the extensible to the inextensible regime.
In contrast with our analysis with moving boundary conditions, Biot’s analysis in the limit of infinitely fast
loading leads to rate independent exponential growth and wavelength.
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Slender structures embedded in complex fluids which
buckle and fold as a result of mechanical compression are
commonly found as in F-actin and microtubules in cell
mechanics [1–3], flagella in swimming organisms [4–6],
fibers in paper processing [7], and Earth’s crust in oro-
genesis [8]. A classical result dating back to Euler states
that a thin sheet or filament will buckle under axial loading
above a critical strain which is proportional to the square of
the mode number and the square of the ratio of its thickness
to length [9]. While buckling typically occurs in the
fundamental mode corresponding to the lowest strain,
higher modes can occur depending on the constraints
along the filament, which may be static or dynamic in
nature [10–16]. Although theoretical analyses of the
problem are numerous, there are few experimental systems
allowing close comparison with predictions. Surprisingly,
since the work by Biot et al. [17], where the phenomena
were first demonstrated, no careful experimental studies
have systematically examined the wrinkling dynamics of an
isolated elastic filament in a viscous Newtonian fluid.
Traditional analyses of the wrinkling observed in elastic

filaments consider linear stability analysis with instantane-
ous loading, which can be an oversimplification in many
situations [3,8,18–20]. For example, the folding of sedi-
mentary layers, the buckling of membranes, the motion of
living systems or actuated membrane involves the change of
distance between material points in response to a stimuli
(stress, light, pH, temperature) whose dynamics is set
externally [21–30]. Additionally, in-plane and out-of-plane
modes experience dynamics with a time scale highly
dependent on the surrounding environment as in air [16],
an intracellular medium [31], or a viscous fluid [32]. In this

context, the interplay between the dynamics of an external
stimuli and the dynamics of the elastic modes have been
largely overlooked. Here, we examine a model system that
reveals the emergence of a new time scale for the growth of
wrinkles that explicitly depends on the loading rate. The
precise understanding of this interplay is important for the
development of fast reacting metamaterials and the tuning of
the rheological response of polymers.
Experiments were performed with an elastic filament

clamped at both ends and immersed in a container filled
with a viscous fluid. The filament has a length L ¼ 92mm,
width W ¼ 3.0mm, and thickness h ¼ 0.30mm and is
composed of vinylpolysiloxane with a Young’s modulus
E ¼ 1 MPa, and Poisson’s ratio ν ≈ 0.5. The bending and
stretching moduli are given by B ¼ Eh3W=12 and
K ¼ EhW, respectively. An anisotropic filament cross
section was chosen to have a well-defined plane in which
the filament buckles, simplifying data acquisition and
analysis. One clamped end of the filament is attached
to a motorized translating stage which can be moved through
a displacement u, which varies between u0 < 0 when
the filament is under tension, and uf > 0 when the filament
is under compression with speed Ve in the range
5 × 10−3–10 mm=s. The fluid composed of a glycerol-water
mixture is prepared so that the filament is neutrally buoyant
and has a dynamic viscosity η ¼ 0.9 Pa s at 25 °C. The
viscous drag coefficient is given by μ ≈ 4πν= logðL=WÞ
[4,33]. Unless otherwise stated, distances and time are
normalized by L and a time scale τ¼μL2=K¼3×10−2 s
given by a balance between viscous drag and elastic forces.
With this rescaling, the nondimensional speed V ¼ τVe=L
ranges between 2 × 10−6 and 3 × 10−3.
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The filament is imaged with a 1200 × 1200 pixel camera
at 1500 fps by placing a diffused light source on the
opposite side of the container which allows a good contrast
for subsequent image analysis. We then obtain the filament
deflection w to within 0.15h as a function of the non-
dimensionalized coordinate along the longitudinal direc-
tion x and time t. We calculate the bending content
κðtÞ ¼ h2h½w;xxðx; tÞ�2i, where h::i denotes average over
the length of the filament, and the averaged strain normal-
ized by L given by

γðtÞ ¼ −uðtÞ þ 1=2
Z

1

0

w2
;xðx; tÞdx: ð1Þ

This expression is obtained by integrating the 1D nonlinear
strain γðx; tÞ ¼ u;xðx; tÞ þ 1=2½w2

;xðx; tÞ�, where uðx; tÞ is
the local in-plane axial displacement [34]. The evolution of
the stretching and bending energies stored in the filament
can be then quantified by γðtÞ and κðtÞ, respectively.
Figure 1(a) shows the measured profile at various times

while the filament is loaded as denoted by the bar on
the left. The filament is observed to undergo a wrinkling
instability during the loading phase (t < tf ¼ uf=V) with a

wavelength which is approximately one-third of the length
of the ribbon. A wave vector larger than the fundamental
buckling mode indicates a higher critical buckling load,
hence a dynamical strengthening induced by the viscous
medium. Shortly thereafter, the ribbon is observed to
undergo spontaneous coarsening until the wavelength
reaches the filament length, and the shape corresponds
to the fundamental buckling mode calculated using a time-
independent Euler analysis [35]. We obtain the evolution of
γ and the bending content κ, and plot uðtÞ, γðtÞ, and κðtÞ in
Fig. 1(b) focusing on a time interval over which most of the
initial buckling and coarsening occurs. At the onset of
instability, γðtÞ and κðtÞ are observed to increase rapidly,
showing the increase of the bending energy and the
relaxation of the compression. From the plot, we observe
that the rate of change of γðtÞ and κðtÞ starts to decrease
well before compression is stopped. Although γðtÞ is found
to vanish much faster than κðtÞ, stretching is expected to
play an important role at onset. We can then anticipate that
a wrinkling growth model is likely to include small but
finite extensibility and bending rigidity.
We obtain the root mean square amplitude AðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2ðx; tÞi

p
from the measured wðx; tÞ to understand the

growth of the buckling modes. Figure 1(c) shows a plot of
AðtÞ as a function of time scaled with a parameter α. This
parameter is chosen so that the initial growth of AðtÞ
collapses onto a single curve before a time when its rate of
increase starts to decrease. Plotting α as a function of V in
log-log scale in Fig. 1(d), we find that the data can be
described by the function α ∼ Vn with n ¼ 0.7� 0.08. This
form is observed to be significantly different from a linear
scaling if the dependence on time was captured simply
by V.
To develop a model of this nontrivial scaling, we next

consider the spatiotemporal variation of the normal deflec-
tion wðx; tÞ and the axial strain averaged over the length
given by γðtÞ. We assume that axial force balance develops
rapidly in our system because of the homogeneous devel-
opment of wrinkles along the length of the filament in
contrast with observations with very viscous fluids which
show wrinkling localized near the moving ends [36].
Under these conditions, the axial tension in the filament
T just depends on time and is given by TðtÞ ¼ KγðtÞ. The
Reynolds number is typically low, Re¼ ρ _AW=η ∼ 10−1,
where ρ∼103 kg=m3 is the fluid density and _A ∼ 10−1 m=s
[see Fig. 1(c)]. Then, neglecting inertia and balancing
drag, bending, and stretching forces, the nondimensional
equation of evolution for wðx; tÞ is given by

_w ¼ −
B
K
w;xxxx þ γðtÞw;xx: ð2Þ

The corresponding boundary conditions are wð0; tÞ ¼
wð1; tÞ ¼ 0, w;xð0; tÞ ¼ w;xð1; tÞ ¼ 0, uð1; tÞ ¼ 0, and
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FIG. 1. (a) Snapshots of the measured filament deflection
wðx; tÞ at various times t with the applied strain as a function
of time illustrated by the bar on the left (uf ¼ 7 × 10−3).
Wrinkles emerge during loading followed by coarsening until
the fundamental buckling mode is reached. (b) The measured
strain γ is observed to relax rapidly while the ribbon is being
compressed. In contrast, the bending content κðtÞ associated with
the coarsening dynamics relaxes much slower while the ends of
the filament are held with a prescribed strain. (c) The initial
evolution of AðtÞ for various V is observed to collapse on to a
single curve using a fitting parameter α. (d) α is observed to scale
sublinearly as a function of V consistent with Eq. (8).
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uðtÞ≡ uð0; tÞ ¼
�
Vt; if t < uf=V;

uf; otherwise:
ð3Þ

The nonlinear, integro-differential equation with moving
boundary conditions given by Eqs. (1), (2), and (3) is
solved numerically using the method of lines by discretiz-
ing the system and approximating partial differentials with
finite differences in space [37]. This results in a series of
ordinary differential equations (ODEs) for the evolution of
the deflection. Further, differentiating the strain given in
Eq. (1), an additional equation for the evolution of the strain
is obtained [20]. Then, by setting the initial conditions for
the deflection with white noise, the equations are integrated
forward in time using the ODE solvers in MATLAB [35].
A sample initial spatiotemporal growth and coarsening of
the wrinkles observed in the simulations by plotting wðx; tÞ
in Fig. 2(a) and wðx; tÞ normalized by AðtÞ in Fig. 2(b) [35].
One can observe that the amplitude of the wrinkles

increases rapidly and the wavelength appears to decrease
until t ≈ 10 before coarsening starts to develop and ampli-
tude increases more slowly. To quantify the variation in
wavelength, the temporal evolution of the Fourier modes as
a function of k and t are plotted in Fig. 2(c). One observes
that the peak in k increases initially before decreasing
confirming the trends noted in the evolution of wðx; tÞ=AðtÞ
in Fig. 2(b). Comparing the three plots, one also observes
that the rapid increase in amplitude occurs at a time similar
to time tmax at which the wave number reaches a maxi-
mum kmax=2π ¼ 7.
We then measure the normalized stretching energy Us¼

1
2

R
γ2ðx;tÞdx andbending energyUb¼1

2
ðB=KÞR ½w2

;xxðx;tÞ�dx.
As shown in Fig. 2(d), tmax is found to be the crossover time
from a stretching dominated extensible regime near the
onset of instability to a bending dominated inextensible
regime during coarsening.
Figure 2(e) shows a plot of AðtÞ in semi-log scale which

is observed to first increase faster than exponential fol-
lowed by a much lower growth rate for t > tmax. We find
that the initial growth is accurately fitted by AfitðtÞ ¼
A0 exp ½ðαtÞ3� as shown in Fig. 2(e). Varying the compres-
sion speed V in the range 10−8 and 100, we measure the
dependence of tmax, kmax, and α and plot the result in
Fig. 2(e)(inset), Figs. 3(a) and 3(b), respectively. Because
the observed trends are captured by the dashed lines, we
find α ∼ 1=tmax ∼ Vn with n ¼ 0.68� 0.05 in very good
agreement with the experiment. Further, the wave numbers
measured in the experiments and in the simulations are also
in agreement with kmax ∼ V0.17. Thus, we conclude that the
simplified Eq. (2) captures the overall evolution of the
wrinkling patterns observed in the experiments. This allows
us to next develop an understanding of the observed
phenomena by performing a linear stability analysis around
the planar undeflected configuration.
Now, Eq. (2) in Fourier space is given at linear order by

_̂wðk; tÞ ¼
�
uðtÞk2 − B

K
k4
�
ŵðk; tÞ; ð4Þ

FIG. 3. The observed evolution of (a) α and (b) kmax with V in
experiments and numerical simulation are in excellent agreement
with the derived scalings in the rate-dependent loading regime
above V� indicated by a vertical line.
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FIG. 2. (a) A map of wðx; tÞ for V ¼ 5.0 × 10−4 and uf ¼ 0.1.
Compression stops at time tf¼200≫tmax¼10.5. (b) Normalizing
the same data as in (a) by AðtÞ reveals the wrinkling dynamics
before tmax. We observe an increase of the wave number until
t ¼ tmax followed by a decrease. (c) Map of the Fourier mode
wðk; tÞ showing the k maximum reached at tmax. Horizontal
dashed line corresponds to tmax in (a)–(c). (d) Temporal evolution
of the stretching energyUs and the bending energyUb shows that
tmax is the crossover time between a stretching dominated regime
(or extensible regime) and a bending dominated regime (or
inextensible regime). (e) Semi-log plot of AðtÞ shows a nonlinear
growth where the amplitude can be fitted by AfitðtÞ ¼ exp ½ðαtÞ3�.
Inset: tmax is observed to decay consistent with Eq. (10).
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where ŵðk; tÞ is the Fourier transform ofwðx; tÞ. The general
solution of this equation is simply ŵðk; tÞ ¼ w0eΓðk;tÞ,
where w0 is proportional to the amplitude of the white
noise used as initial condition in the numerics and Γðk; tÞ ¼
k2ϕðtÞ − B=Kk4t with ϕðtÞ ¼ R

t
0 uðt0Þdt0. The standard

deviation of wðx; tÞ is then

A2ðtÞ ¼ jw0j2
2π

Z þ∞

−∞
e2Γðk;tÞdk; ð5Þ

where we used the Parseval-Plancherel theorem. The integral
can be evaluated using the Laplace method [21]. When
ϕðtÞ > 0, Γðk; tÞ reaches a maximum for k2 ¼ k�2ðtÞ ¼
K=ð2BÞϕðtÞ=t. Therefore,

AðtÞ ∼ jw0j=2
π1=4

eΓ
�ðtÞ

ϕ1=4ðtÞ ; ð6Þ

where Γ�ðtÞ ¼ K=ð4BÞϕ2ðtÞ=t. Equation (6) is accurate
for t ≫ 1. Using the boundary conditions, we have
ϕðt<uf=VÞ¼Vt2=2 and ϕðt>uf=VÞ¼−u2f=ð2VÞþtuf.
Thus,

Γ�ðtÞ ¼ Ku2f
4B

8<
:

V2t3

4u2f
; if t < uf

V ;

u2f
4V2t −

uf
V þ t; if t > uf

V :
ð7Þ

Thus, we find that AðtÞ ∼ exp ½ðαtÞ3� during the loading
phase. This superexponential growth is consistent with the
fits used to describe the experimental and numerical data,
and where

α ¼
�
K
8B

�
1=3

V2=3: ð8Þ

This calculated scaling withV is also in very good agreement
with both the observed n ¼ 0.7� 0.08 in experiment in
Fig. 1(d), and n ¼ 0.68 in simulations in Fig. 2(e). Our
analysis is accurate for the intermediate regime where
1 ≪ t ≪ 1=α consistent with the experiment. Further, the
fastest mode has a wave number

k�2ðtÞ ≈ Vt
4B=K

: ð9Þ

We cannot capture a time dependence of the wave vector
near the initial growth because of the noise in the image
detection, unlike AðtÞ which is much cleaner. However, we
can measure k near coarsening, i.e., when nonlinearities start
to dominate. These nonlinearities become dominant for large
amplitude for t > tmax, where

tmax ∼ 1=α ∼ V−2=3: ð10Þ

Then, at time t ¼ tmax we have

k2max ¼
�
K2V
8B2

�
1=3

: ð11Þ

The derived scaling of kmax ∝ V1=6 is consistent with the
weak V0.17 dependence seen in the numerics and the
experiment shown in Fig. 3(b) for large enough V.
Importantly, Eq. (11) shows that the dynamical strengthen-
ing is rate dependent, increasing with V, in contrast with
previous studies. At the lowest V investigated, one observes
that kmax is constant and corresponds to the fundamental
mode as can be expected. The crossover speed V� between
wrinkling and buckling dynamics is derived using Eq. (11)
and kmax ¼ 2π leading to V� ≈ 8ð2πÞ6ðB=KÞ2 ∼ 10−7 con-
sistent with numerical and experimental results. Thus, our
model explains quantitatively the dependence of the growth
rate and the wave vector with the loading speed.
To contrast with the widely used sudden compression

approximation, we consider the limit of large loading speed
V or, equivalently, long time (t > uf=V). Using Eq. (7), we
recover the well-known exponential growth, AðtÞ ∼ eβt,
where

β ¼ Ku2f
4B

; and k�2 ¼ Kuf
2B

; ð12Þ

consistent with previous linear stability analysis [8]. While
the sudden compression regime is not reached in our
experiment before coarsening develops, we can examine
this regime by numerically solving Eq. (2) by imposing
an instantaneous compression uf. Numerics confirms an
exponential growth of the wrinkling amplitude with a
growth rate β which is shown in Fig. 4 as a function of
applied strain uf. Interestingly, we find that the regime
β ∼ u2f discussed in Ref. [8] is only valid when uf ≫ u1, the
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FIG. 4. Evolution of β with uf − u1 for an instantaneous
compression. A crossover between a linear and quadratic trend
occurs approximately at the critical compression for the first
asymmetrical mode at u2 ¼ 7.5 × 10−5 yielding u2 − u1 ¼
4.3 × 10−5.
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strain corresponding to the buckling in the fundamental
mode. Near threshold (uf ≈ u1), we find another regime
characterized by β linearly increasing with uf. In this regime,
the discreteness of the modes imposed by the boundary
conditions plays a dominant role. When u1 < uf < u2, the
only possible wave vector is k ¼ 2π, yielding _wðk; tÞ ¼
4π2ðuf − u1Þwðk; tÞ, where u1 ¼ 4π2B=K. Upon integra-
tion, we still obtain an exponential growth with a growth rate
linearly depending on uf − u1 as shown in Fig. 4. Therefore,
the sudden compression approximation always leads to
exponential growth and rate independent wrinkling dynam-
ics inconsistent with our experiments.
In conclusion, our study reveals that filaments subjected to

a ramped loading show a superexponential wrinkling growth
in a regime where the filament is extensible, which is
qualitatively different than the growth derived when assum-
ing a sudden loading. In particular, we find the wrinkles to
grow as exp½ðαtÞ3� with a time scale α−1 ∼ β−1=3 _γ2=3, which
is a combination of the spontaneous time scale β−1 of sudden
compression and a time scale given by the loading rate _γ.
This superexponential growth is found to develop for time
t < tmax ∼ _γ−2=3, before entering in an inextensible regime
when coarsening occurs. Our analysis based on our model
experimental system thus advances a new time scale, which
is important to the mechanics of filaments that are subjected
to time-dependent confining stresses.
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