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We theoretically study the interplay between bulk Weyl electrons and magnetic topological defects,
including magnetic domains, domain walls, and Z6 vortex lines, in the antiferromagnetic Weyl semimetals
Mn3Sn and Mn3Ge with negative vector chirality. We argue that these materials possess a hierarchy of
energy scales, which allows a description of the spin structure and spin dynamics using an XY model with
Z6 anisotropy. We propose a dynamical equation of motion for the XY order parameter, which implies
the presence of Z6 vortex lines, the double-domain pattern in the presence of magnetic fields, and the
ability to control domains with current. We also introduce a minimal electronic model that allows efficient
calculation of the electronic structure in the antiferromagnetic configuration, unveiling Fermi arcs at
domain walls, and sharp quasibound states at Z6 vortices. Moreover, we have shown how these materials
may allow electronic-based imaging of antiferromagnetic microstructure, and propose a possible device
based on the domain-dependent anomalous Hall effect.
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The anomalous Hall effect (AHE) [1,2] has been a
nucleation center for geometry and topology in the physics
of solids. The concepts of Berry curvatures and topology
unveil broad applications to electronic systems in the form
of topological insulators, superconductors [3,4], and semi-
metals with topological Weyl (and other) fermion excita-
tions [5–18]. The AHE reappears as one of the key
emergent properties of topological semimetals.
The dissipationless nature of the AHE also makes it

interesting for applications. Antiferromagnetic realizations
of AHE may be of practical interest for the sake of
miniaturization, but the microscopic magnetic structure,
the spin dynamics, and the AHE of antiferromagnets are
relatively uninvestigated. Here we attack these issues in the
family of noncollinear antiferromagnets including Mn3Sn
and Mn3Ge, for which a strong AHE was predicted and
then experimentally verified to exist [19–22]. First princi-
ples calculations further indicate that in Mn3Sn and Mn3Ge
there are Weyl nodes around the Fermi level [23,24]. We
argue that these materials possess a hierarchy of energy
scales that permits a description of the microstructure and
spin dynamics as an XY model with Z6 anisotropy. We
propose a dynamical equation of motion for the XY order
parameter, which implies a rich domain structure, the
presence of Z6 vortex lines, and the ability to control
domains with current. We further introduce a minimal
electronic model that allows efficient calculation of the
electronic structure in a textured antiferromagnetic con-
figuration, unveiling Fermi arcs at domain walls, and
quasibound states at Z6 vortices. We show how these
materials may allow electronic-based imaging of antifer-
romagnetic microstructure and propose a possible device
based on domain-dependent AHE.

Symmetry and the microscopic spin model.—The Mn3Sn-
class material crystallizes in hexagonal lattice structure with
space group P63=mmc as shown in Figs. 1(a) and 1(b).
Taking Mn3Sn as an example, each Mn4þ ion has a large
classical spin ∼2–3 μB[25,26] forming a layered kagomé
lattice. The system orders antiferromagnetically in a 120°
noncollinear structure as shown in Fig. 1(c), with the Neel
temperature TN ≈ 420 K [25–28]. This may be understood
from the hierarchy of interactions typical for 3d transition
metal ions: Heisenberg exchange is largest, followed by

FIG. 1. (a) The lattice structure of Mn3Sn from a top view, and
(b) a side view. The thick dashed lines with brown, red, and blue
colors indicate different hopping processes of the tight-binding
model introduced in the text. The gray dashed lines in (a) indicate
the easy axes. (c) The six magnetic domains. (d) Schematic
illustration of the Z6 vortex lines.

PRL 119, 087202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

25 AUGUST 2017

0031-9007=17=119(8)=087202(5) 087202-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.087202
https://doi.org/10.1103/PhysRevLett.119.087202
https://doi.org/10.1103/PhysRevLett.119.087202
https://doi.org/10.1103/PhysRevLett.119.087202


Dzyaloshinskii-Moriya (DM) interaction, with single-ion
anisotropy (SIA) being the weakest effect. The former two
terms select an approximately 120° pattern of spins with
negative vector chirality, which leaves a Uð1Þ degeneracy:
any rotation of spins within the ab plane leaves the energy
unchanged, when the SIA is neglected. Therefore, the
system can be described by the following microscopic spin
Hamiltonian:

Hs ¼ J1
X

hijixy
Si · Sj þ J2

X

hijiz
Si · Sj

þ
X

hijixy
Dij · Si × Sj −

X

i

Kðn̂i · SiÞ2: ð1Þ

Here the spin Si is a classical vector with fixed length ms.
The positive constants J1, J2 are isotropic exchange
interactions between intraplane and interplane nearest-
neighbor spins, which include contributions mediated
by itinerant electrons, i.e., Ruderman-Kittel-Kasuya-
Yosida (RKKY) couplings. We include an in-plane
Dzyaloshinskii-Moriya interaction specified by the vector
Dij ¼ DẑþD0ẑ × êij, where êij is the unit vector oriented
from site i to site j. n̂i is the unit vector characterizing the
local easy axis at site i. From Eq. (1) we can determine
nearly all the properties of the classical kagomé antiferro-
magnet. In particular, we find that the Z6 anisotropy λ is
OðK3Þ, λ ¼ K3m2

s=12ðJ1 þ J2Þ2. The SIA K and the in-
plane DM interaction D0 lead to both in-plane and out-of-
plane cantings of the magnetic moment,

M⊥c ¼
Kgms

J1 þ J2
ðcos θ; sin θ; 0Þ;

Mz ¼ −
D0Kgmsffiffiffi
3

p ðJ1 þ J2Þ2
sin 3θ; ð2Þ

where g denotes the Landé g factor. The z-component
magnetization jMzj vanishes when θ is 2πn=6 (λ > 0), i.e.,
when the local easy axis points from the Mn to the nearest-
neighbor Sn, which we believe is the ground state forMn3Sn.
On the other hand, jMzj is maximized when θ ¼
ð2nþ 1Þπ=6 (λ < 0), which may lead to small in-plane
anomalousHall conductivity, as is the case inMn3Ge [21,22].
The in-plane and out-of-plane magnetic susceptibilities

are also derived fromEq. (1), fromwhichwe can evaluate the
microscopic interaction parameters by comparing the sus-
ceptibility formula to the corresponding experimental data
[21]. We find that J1 þ J2 ¼ 5.606 meV, D ¼ 0.635 meV,
and K ¼ 0.187 meV (see Supplemental Material [29]).
Order parameter, free energy, and implications.—From

Eq. (1) we derive a phenomenological free energy for the
system with an XY order parameter ψ ¼ mse−iθ, where ms
is the magnitude of the local spin moment, and θ is (minus)
the angle of some specific spin in the plane. We focus on
the ordered phase, in which ms is uniform, and the free
energy may be written in terms of θ alone. Symmetry
dictates the form

Fs ¼
Z

d3r

�
ρ

2
j∇θðrÞj2 þ ρ1jK̂ðθÞ · ∇θj2

− λ cos 6θðrÞ − γB · K̂

�
: ð3Þ

Here ρ and ρ1 are isotropic and anisotropic stiffnesses; λ is
a Z6 anisotropy. We also introduced the XY unit vector
K̂ ¼ ðcos θ; sin θ; 0Þ, which describes coupling γ to a
uniform magnetic field B (which occurs due to small in-
plane canting of the moments [25,26,28]). Equation (3) is
derived from the microscopic spin Hamiltonian Eq. (1),
which allows us to estimate these parameters. We estimate
ρ ≈ 0.568 meV=Å, ρ1 ≈ 0.011 meV=Å, and λ ≈ 1.159 ×
10−7 meV=Å3 at temperature 50 K (see Supplemental
Material [29]).
The Z6 structure of the free energy implies the existence

of six minimum energy domains in which θ maximizes
λ cos 6θ. We take λ > 0, for which this is θ ¼ 2πn=6, with
n ¼ 0;…; 5. It is convenient to label them as αþ;−, βþ;−,
and γþ;− as shown in Fig. 1(c), with the � superscript
denoting domains that are time-reversal conjugates.
The long-time dynamics follows from the free energy

and the Langevin equation (see chapter 9 of Ref. [30])

∂θðr; tÞ
∂t ¼ −μ

δFs

δθðr; tÞ þ μηðr; tÞ þ fðjÞ; ð4Þ

where ηðr; tÞ represents a random thermal fluctuation at
temperature T obeying the Gaussian distribution of zero
mean. μ is the damping factor, and hereafter is set to 1.
The final term fðjÞ represents nonequilibrium forces to be
discussed later. Neglecting ρ1 and for B ¼ 0, Eq. (4)
becomes the famous (overdamped) sine-Gordon equation.
Its stationary solutions include a domain wall with a width
π

ffiffiffiffiffiffiffi
ρ=λ

p
=6 ∼ 110 nm using our estimates. Significantly,

the elementary domain walls connect states that differ by
Δθ ¼ π=3, which are not time-reversal conjugates. The ρ1
term leads to orientation dependence of the domain wall
energy, and, e.g., faceting of domain boundaries. Six of
these minimal domain walls meet at curves in three
dimensions, which define Z6 vortex lines [see Fig. 1(d)],
around which θ winds by �2π.
To observe the microstructure, we carried out a numeri-

cal simulation of a thin slab, assuming homogeneity in the z
direction and discretizing the two-dimensional continuum
model with an effective lattice constant of acg ¼ 600 Å
(see Supplemental Material [29]). Figure 2(a) shows the
equilibrium spin configuration resulting from a quench
from a random initial state of a 576 μm2 sample in zero
applied field. Clearly there are six types of domains in the
figure, marked by α�, β�, and γ�. These sixfold domains
merge at the vortices and antivortices marked by white and
black dots, respectively.
In Fig. 2(b), we show the spin configuration resulting

from the same preparation but with an applied magnetic
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field of B ¼ 0.005 T along the [120] axis (y axis). As is
clearly shown in the figure, the field preferentially selects
just two degenerate βþ (cos θ ¼ −1=2) and γ−

(cos θ ¼ 1=2) domains. The orientation of the domain
wall, which tends to be normal to the [100] direction, is
fixed by the anisotropic stiffness term.
Minimal electronic model and electronic structure.—In

order to study the electronic properties in the presence of
magnetic textures with large-scale spatial variations, we
introduce a minimal four-band tight-binding (TB) model
with a single spinor pz orbital at each Sn. As indicated by
the thick dashed lines in Figs. 1(a) and 1(b), we consider the
following four hopping processes:

tintraðrnmÞ ¼ t0I2×2 þ tJσ · Snm þ ð−1Þξmniλzσz;

tinterðrnmÞ ¼ t1I2×2;

t0interðrnmÞ ¼ iλRe
rnm
soc · σ;

t00interðrnmÞ ¼ t2I2×2; ð5Þ
where the hopping from orbitalm centered at rm to orbtial n
centered at rn is expressed as a 2 × 2 matrix due to the spin
degrees of freedom of each orbital, and rnm ¼ rn − rm. The
model includes three spin-independent hopping terms (t0
in-layer and t1 and t2 interlayer), a spin-dependent hopping
tJ reflecting exchange coupling to the Mn moment S in
the middle of the bond across which the electrons hop, and
two spin-orbit coupling (SOC) terms λz and λR, which are
important due to the heavy nature of the Sn ions. Details on
the ξmn and e

rnm
soc parameters that define the SOC are given in

Supplemental Material [29]. Hereafter we fix the parameters
of the model as t0 ¼ 1, t1 ¼ 0.5, tJ ¼ −0.5, λz ¼ 0.5,
t2 ¼ −1, and λR ¼ 0.2. We arrange Snm spins to reflect
the spin order under consideration. In the ordered state we
take the spin canting angle ∼1.7°, corresponding to a net
moment∼5% of eachMn spin for each kagomé cell.We refer
the readers to Supplemental Material [29] for more details.
The bulk band structure of the TB model introduced

above in the αþ domain is shown in Fig. 3(a). We find that
in the αþ domain [see Fig. 1(c)], there are four Weyl nodes

at (�0.3522, 0, 0) and (∓ 0.3522, �0.3522, 0) at energy
EW1 ¼ −2.395t0, which are denoted by solid blue dots in
the inset of Fig. 3(a), with the sign corresponding to the
chiralities of the Weyl nodes. There are two additional band
touching points with quadratic dispersions along the kz
direction at (0, �0.3564, 0) at energy EW2 ¼ −2.480t0.
Since the dispersion is quadratic along kz, these two
additional nodes carry zero Berry flux, and do not make
significant contributions to the transport properties. The
positions of theWeyl nodes in the other five domains can be
obtained by applying C3z and/or time-reversal operations to
those of the αþ domain.
From magnetic structure to electronic properties.—The

most interesting feature of Mn3Sn and its relatives is the
strong influence of the magnetism on the electronic
properties such as conductivities. In the Mn3Sn family,
crystalline symmetries and the Onsager relation tightly
constrain the conductivity tensor (see Supplemental
Material [29]). In general the antisymmetric part of the
Hall conductivity is expressed in terms of a “Hall vector”
Q, with 1

2
ðσμν − σνμÞ ¼ ðe2=2πhÞϵμνλQλ. Up to the third

order in ψ , we find

Q ¼ qjψ jK̂ þ ~qjψ j3Im½ðK̂x þ iK̂yÞ3�ẑ; ð6Þ
where qjψ j and ~qjψ j3 are parameters arising from micro-
scopic modeling. Since we expect the Oðjψ j3Þ terms to be
small, we observe that the Hall vector is directed along K̂,
which lies in the xy plane. To verify these symmetry
considerations, we carried out a direct calculation of the
full bulk conductivity tensor of the microscopic model
using the Kubo formula (see Supplemental Material [29]).
We show the calculated anomalous Hall conductivity σzx
in the αþ domain in Fig. 3(b). The result is generically
nonzero, but highly dependent upon the Fermi energy (the
horizontal axis).
Electronic properties associated with topological

defects.—The direct connection of the conductivity to
the order parameter suggests that transport can be a fruitful
probe of magnetic microstructures. When the electronic
mean free path is shorter than the length scales of magnetic

FIG. 2. The spin configurations on the coarse-grained lattice
at time t ¼ 9600 obtained from numerical simulations of the
Langevin equation: (a) without any magnetic field, and (b) an
external magnetic field B ¼ 0.005 T is applied along the y
direction.

FIG. 3. (a) The bulk band structure of the tight-binding model
in the αþ domain with 1.7° spin canting. The inset indicates the
positions of two different types of bulk Weyl nodesW1 andW2 in
the kz ¼ 0 plane. (b) The anomalous Hall conductivity σyz in the
αþ domain.
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textures, a local conductivity approximation is adequate:
JðrÞ ¼ σ½K̂ðrÞ�EðrÞ. From this relation and Eq. (6), the
electrostatic potential ΨðrÞ can be determined for an
arbitrary texture K̂ðrÞ. For example, in the yz plane, the
electrostatic potential Ψðz; yÞ may be expanded as
Ψðz; yÞ ≈ −zE0 þ E0ϕðz; yÞ, and ϕðz; yÞ is determined by

∂2
zϕðz; yÞ þ

σyy
σzz

∂2
yϕðz; yÞ ¼ ∂yθHðz; yÞ; ð7Þ

where E0 is the constant electric field, θHðz; yÞ ¼
σyzðz; yÞ=σzz, and σyz is proportional to K̂x as shown in
Eq. (6). Through inversion, it should be possible to image
the magnetic domain structure purely through a spatially
resolved electrostatic measurement.
In the full quantum treatment, the electronic structure is

nontrivially modified by magnetic textures. The new feature
here is the appearance of Fermi arcs at domain walls. This is
because a domain wall acts as a sort of internal surface, at
which Fermi arc states carry chiral currents, similar to
ordinary surfaces. Without loss of generality consider a
minimal energy domain wall between the βþ and γ−

domains, which haveK at�30° from the y axis. The domains
have Weyl points in the kz ¼ 0 plane, with chiralities that
differ in the two domains. Distinct electronic properties thus
occur when this domain wall is in an xy, xz, or yz plane of
the crystal.
Figure 4(a) shows the surface spectral functions of the βþ

domain for a [100] surface. There are three Fermi arcs
connecting the two projectedWeyl nodes, which are closer to
the origin. Figure 4(b) shows the spectral function at the
interface of the βþ and γ− domainswith the same orientation.
It shows double the Fermi arcs found at the interface, i.e., six
instead of three (see Supplemental Material [29] for more
details).
We make two proposals to detect the presence of the

domain-wall Fermi arcs. First, the in-plane transport within
a domain wall may exhibit its own anomalous Hall effect.
We checked that this indeed occurs for a βþ − γ− wall with
zx orientation, by calculating σzx for a supercell with two
domain walls spread over 30 primitive cells. We find σzx ¼
0.044 for the supercell, about two times larger than the bulk

value of 0.023 found for the same cell with a single βþ or γ−

domain.This enhancement is expectedwhenever K̂ is normal
to the wall in its interior. Second, domain wall bound states
can manifest as an intrinsic resistance across the wall, since
they take away from the weight of continuum states that are
strongly transmitted and hence contribute to conductance.
We verified such a decreased conductance normal to thewall
for all domain wall orientations in numerical studies (see
Supplemental Material [29]).
While we focus on the domain walls, it is worth noting

that the Z6 vortex lines may have their own electronic
states. Using the tight-binding model introduced above,
we have numerically constructed a 40 × 40 × 1 supercell
including six domains, which are merged at a vortex line.
The energy dependence of the local density of states (DOS)
at the vortex line is shown in Fig. 5(a), where the red (blue)
line indicates the DOS in the presence (absence) of the
vortex line. There are two distinct peaks of DOS that seem
to be contributed by the vortex line: one at energy E ∼ 4,
and the other extending from -1.3 to 0.2. Figure 5(b) further
shows the local DOS distribution in the supercell at E ¼
−1.15 in the presence of a vortex line, which indicates a
sharp peak localized at the vortex line. Such quasibound
states at the vortex line may be a consequence of the chiral
magnetic field emerging from the winding of the XY spins
around the Z6 vortex line [31].
Current-driven domain wall dynamics.—Let us now

consider the feedback of the conduction electrons on the
spin texture. Given that the primary order parameter of the
antiferromagnet is not the magnetization, it is unclear how
consideration of the spin-transfer torque [32] applies here.
Instead, we take a symmetry-based approach and ask how
the current jmay appear as a force in the equation of motion
for the easy spin angle θ, Eq. (4). The result (see
Supplemental Material [29]) is that the force takes the form

fðjÞ ¼ −
X

a

ðpaja∂aθ þ q1j · ∂zK̂ þ q2jz∇ · K̂Þ: ð8Þ

Here px ¼ py, pz, q1, and q2 are constants. Various
arguments (see Supplemental Material [29]) suggest that
q1 and q2, which tend to drive the domain wall along the

FIG. 4. (a) The surface Fermi arcs of the βþ domain with the
surface normal vector x̂. (b) The domain wall Fermi arcs with
the domain wall in the yz plane. The white dots indicate the
projection of Weyl nodes into the folded surface Brillouin zone.

FIG. 5. (a) The energy dependence of the local DOS at the
vortex line. (b) The local DOS at energy E ¼ −1.15t0 distributed
in real space with a vortex line located at the origin.

PRL 119, 087202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

25 AUGUST 2017

087202-4



direction perpendicular to the current flow, are much
smaller than pa, so we henceforth neglect them.
Despite the intrinsic antiferromagnetic nature of the

system, the pμ terms appear formally very similar to spin-
transfer torques. They could be understood in a hydro-
dynamic fashion as describing “convection” of the spin
texture with or against the current flow: indeed added to
Eq. (4), these terms are equivalent to a Galilean boost and
consequently velocity va ¼ μpaja. This leads to concrete
experimental proposals. Specifically, in the geometry of
Fig. 2(b), a current applied along the x direction controls
the position of the wall. The nondissipative Hall voltage
measured between two contacts across the y direction at fixed
x can thereby be switched by purely electrical means, as the
domain wall moves to the left or right of the contacts [33].
Although the quantitative results discussed in this Letter

are for Mn3Sn, most of the key physics, such as the domain-
dependent AHE, the domain wall Fermi arcs, the general
form of the spin models, and the expression of the spin-
transfer torque, also apply to Mn3Ge. This is because they
are derived based on symmetry considerations and topo-
logical arguments that are expected to be robust regardless
of the materials’ details.
The results of this paper provide the framework to design

and model the spin dynamics and topologically influenced
electrical transport in the negative vector chirality antiferro-
magnets Mn3Sn and Mn3Ge, and the methodology may be
applied more broadly to XY-like antiferromagnetic systems.
Weyl nodes in the electronic structure induce Fermi arc
bound states that influence transport in the presence of
domain walls. In addition to advancing the fundamental
physics of Weyl fermions in noncollinear antiferromagnets,
these results mark theMn3Sn class of materials as promising
candidates for novel magnetic storage devices.
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