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We elucidate the origin of the phonon-mediated superconductivity in 2H-NbS2 using the ab initio
anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that supercon-
ductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon
interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place
the system on the verge of a charge density wave instability. We also provide definitive evidence for two-
gap superconductivity in 2H-NbS2, and show that the low- and high-energy peaks observed in tunneling
spectra correspond to the Γ- and K-centered Fermi surface pockets, respectively. The present findings call
for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole
family of metallic transition metal dichalcogenides.
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Transition metal dichalcogenides (TMDs) have gener-
ated considerable interest in recent years, since they
provide an ideal playground for studying semiconductors,
metals, and superconductors in two dimensions using the
same structural template [1–3]. In the case of supercon-
ducting TMDs, one remarkable feature is that Cooper pair
condensation usually coexists with a charge density wave
(CDW) [4], raising the question on whether superconduc-
tivity and the CDW cooperate or compete in these com-
pounds [5–12].
Within the family of superconducting TMDs, 2H-NbS2

stands out as the only system for which a CDW phase has
not been observed [13,14]. This suggests that a comparative
analysis of NbS2 and other superconducting TMDs may
help to clarify the interplay between the superconductive
and the CDW instabilities in the entire family. 2H-NbS2 is a
phonon-mediated superconductor with a critical temper-
ature Tc ¼ 5.7 K. Scanning tunneling spectroscopy mea-
surements on this compound revealed two pronounced
features in the density of states (DOS) at 0.53 and 0.97 meV
below the critical temperature, providing strong indications
of two-gap superconductivity [14]. However, so far micro-
scopic calculations have considered only a single-gap
scenario [15,16].
In this work we investigate the nature of the super-

conducting gap and the pairing mechanism in 2H-NbS2
using the fully anisotropic ab initio Migdal-Eliashberg
theory, and describe both electron-phonon and electron-
electron interactions without any adjustable parameters.
Our key finding is that a very significant contribution to the
superconducting pairing comes from the low-energy anhar-
monic phonons with wave vectors near the line connecting
the M and L points. These are the same phonons respon-
sible for the CDW instability in other TMDs [8,11,17–19],
indicating that superconductivity in NbS2 is intimately

connected with a latent CDW. In agreement with the
scanning tunneling spectroscopy experiments of
Ref. [14], we find two distinct and anisotropic super-
conducting gaps.
All calculations reported in this work were performed

using density functional theory (DFT) in the local density
approximation [20,21]. We employed the QUANTUM

ESPRESSO package [22] for the electronic structure and
lattice dynamics, the EPW code [23–25] for the electron-
phonon interaction (EPI) and the superconducting gap, the
STERNHEIMERGW code [26,27] for the Coulomb interac-
tion and for GW quasiparticle calculations of the band
structure, and the WANNIER90 code [28] for generating
maximally localized Wannier functions [29].
2H-NbS2 crystallizes in a layered hexagonal structure

(space group P63=mmc), with the unit cell containing two
S-Nb-S sandwiches [31]. Figure 1 shows that the Fermi
surface (FS) of 2H-NbS2 consists of three distinct sheets:
(i) a disk-shaped hole pocket centered at Γ (SΓ1

), of
predominant S pz character, (ii) a cylindrical hole pocket
also centered at Γ (SΓ2

), arising from Nb dz2 orbitals, and
(iii) a triangular hole pocket centered around K (SK) that
originates from Nb-dz2 states near the M point, and from
dxy and dx2−y2 states near K.
In order to calculate the superconducting gap and critical

temperature of 2H-NbS2, we start from the screened
Coulomb interaction. Coulomb effects are included in
the Migdal-Eliashberg equations via the Morel-Anderson
pseudopotential μ� ¼ μ=½1þ μ logðωel=ωphÞ� [32]. In this
expression ωel and ωph are characteristic electron and
phonon energies, respectively [33], and μ is a double
Fermi-surface average of the screened Coulomb interaction
W: μ ¼ NFhhhk;−kjWjk0;−k0iiiFS, where NF is the DOS
at the Fermi level and W is calculated within the random
phase approximation [26,27,36,37]. Our calculations yield
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μ� ¼ 0.20 (μ ¼ 0.37), which is larger than typical values
found in isotropic superconductors. This large Morel-
Anderson pseudopotential originates from very strong
repulsive interactions at a few Fermi surface hot spots.
The electron-electron repulsion is weakest for the states
corresponding to in-plane orbitals, that is, in the center of
the Fermi surface sheet SK [see Fig. 1(c) and Fig. S1 in the
Supplemental Material [38]].
Figures 2(a) and 2(b) show the calculated phonon

dispersion relations of 2H-NbS2. In the harmonic approxi-
mation the two lowest-energy vibrational modes near the
M and L points of the Brillouin zone have imaginary
frequencies, as shown in Figs. S2(f) and S2(g) of the
Supplemental Material [38]. For each of these modes we
performed fully anharmonic calculations by mapping the
DFT potential energy surface, and used the renormalized
anharmonic frequencies in all calculations of phonon
dispersions and EPIs. The resulting dispersion relations
are in good agreement with inelastic x-ray scattering
experiments [19]. At the M point the anharmonic modes
have Ag and Bu symmetry, respectively. The DFT potential
energy surfaces of these modes correspond to symmetric
double wells, and can be identified with the modes that
drive the CDW instability in related TMDs [8,11,17,18].

Details about these calculations and comparisons with
other methods [39–45] are provided in the Supplemental
Material [38].
In Figs. 2(d) and 2(e) we show the wave vector–and

mode-resolved electron-phonon coupling strength λphq;ν
along high-symmetry lines. We see that the two anhar-
monic branches exhibit anomalously large EPIs (up to
λphq;ν¼1 ¼ 23.5). In order to check the weight of these modes
on the total EPI, we show in Fig. 2(c) the isotropic
Eliashberg function α2FðωÞ [25] separated into contribu-
tions arising from the two low-energy anharmonic modes
(green and red), and the remaining modes (blue). The
corresponding breakdown of the total EPI strength
[λ ¼ 2

R
∞
0 α2FðωÞ=ωdω] is shown by the dashed lines;

this analysis indicates that the anharmonic modes contrib-
ute more than 50% of the total interaction strength. At
variance with these modes, the contributions of all other
modes are relatively homogeneous and follow the vibra-
tional DOS [Fig. 2(c)].
Anomalous EPI strengths of selected phonons can arise

either from Fermi surface nesting effects [46], or from the
breaking of electronic degeneracies by lattice fluctuations
and the consequent removal of electronic weight from the
DOS close to the Fermi level [47], in analogy with the
dynamical Jahn-Teller effect in molecules [48]. To deter-
mine which mechanism is active in the case of 2H-NbS2,
we calculated the Fermi surface nesting function [25,49].
By inspecting this function in Fig. S3 of the Supplemental
Material [38] we see that there are no obvious nesting
vectors in this system, likely because the sides of the

FIG. 2. (a),(b) Calculated phonon dispersion relations of
2H-NbS2 for the first mode (ν ¼ 1, green), the second mode
(ν ¼ 2, red), and modes ν ¼ 3–18 (blue). (c) Calculated vibra-
tional DOS (solid, black line), isotropic Eliashberg function
α2FðωÞ (shaded areas), and cumulative EPI strength λðωÞ
(dashed lines). The blue curves are for modes 3–18, and the
green and red curves are for the two lowest-energy phonons. (d),
(e) The mode-resolved EPI strength λphq;ν for the phonon modes in
(a) and (b).FIG. 1. (a) Calculated band structure of 2H-NbS2, with the

orbital contributions proportional to the size of the colored dots,
as indicated in the legend: S pz (blue), Nb dz2 (green), and Nb
dxy=dx2−y2 (red). (b) Corresponding DOS and decomposition into
atomic orbitals, using the same color code as in (a). The black line
is the total DOS. (c) Fermi surface showing the three distinct
Fermi surface sheets labeled as SΓ1

(blue), SΓ2
(green), and SK

(red), as well as the high-symmetry points in the Brillouin zone.
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triangular Fermi pocket SK are bulging inwards (Fig. 1).
Therefore, we rule out nesting as a possible cause of strong
EPIs in the anharmonic modes. This is in line with previous
reports on other TMDs [7–9,50]. In order to test the second
mechanism, we focused on the Bu mode at theM point. We
doubled the NbS2 unit cell along the ΓM direction so as to
fold M into Γ, and calculated band structures, DOSs, and
Fermi surfaces with or without a frozen Bu phonon [51].
This phonon induces avoided crossings near the Fermi level
in regions that correspond to the centers of the triangular
Fermi arcs SK in Fig. 1(c). The deformation of the band
structure is accompanied by a suppression of large parts of
the Fermi surface in the supercell (as shown in Fig. 3 and
Fig. S4 of the Supplemental Material [38]) and leads to the
removal of the pronounced shoulder in the DOS close to the
Fermi energy of the undistorted structure (see Fig. 1 and
Fig. S5 of the Supplemental Material [38]). As pointed out
in Refs. [47,52], such changes in the electronic structure
are indicative of a phonon softening and a latent lattice
instability, and are in line with our findings of Fermi-
surface EPI hot spots precisely in the middle of the
triangular sides of SK.
We now move to the superconducting properties of

2H-NbS2. Figure 4(a) shows the distribution of
temperature-dependent superconducting gaps on the Fermi
surface, as calculated using the anisotropic ab initio
Migdal-Eliashberg theory. Our calculations using the
DFT band structure yield a critical temperature Tc ¼
18.6 K and a maximum zero-temperature superconducting
gap Δ ¼ 4.2 meV, overestimating the experimental values
of 5.7 K and 0.97 meV, respectively [14]. The origin of this
discrepancy will be discussed below; for now, in order to
facilitate comparison with experiment, we apply the empiri-
cal scaling factors 5.7=18.6 and 0.97=4.2, respectively.
The superconducting gaps in Fig. 4(a) are seen to follow

the standard BCS-type temperature dependence. At each
temperature the gaps cluster around two distinct values,
indicating that 2H-NbS2 is a two-gap superconductor. The

smaller gap is associated with the Fermi sheets SΓ1
and SΓ2

,
while the larger gap belongs to SK . From the gaps we
calculate the superconducting DOS, and in Fig. 4(b) we
compare our results to the tunneling experiments of
Ref. [14]. The agreement between our calculations and
experiments is very good (apart from the empirical scaling
discussed above), and confirms that the peak around
1.0 meV and the shoulder around 0.6 meV in the tunneling
data taken at 1.8 K are to be associated with two distinct
superconducting gaps on the Γ-centered and on the
K-centered Fermi surface pockets. Our finding of two
distinct superconducting gaps is also in line with the
anomalous temperature dependence of the specific heat
[53] and the pressure dependence of the upper critical
field [54].
Figure 5(a) shows the momentum-resolved supercon-

ducting gap on the Fermi surface. We observe finite values
for Δk on the whole FS; therefore, the FS is fully gapped
below the critical temperature. The gaps on the SΓ1

and SΓ2

sheets exhibit narrow distributions centered around
0.57 meV and 0.56–0.65 meV, respectively. In contrast,
the gap on the SK sheet is highly anisotropic and varies over
the wide range 0.5–1.0 meV [Fig. 5(b)]. By recalling the
orbital analysis of the Fermi surface in Fig. 1 we conclude
that low values of the superconducting gaps are found on
those regions of the Fermi surface with out-of-plane orbital
character (S pz and Nb dz2), while large values correspond
to regions with in-plane character (Nb dxy and dx2−y2).

FIG. 3. (a) Sketch of the folded FS of the 2 × 1 × 1 supercell,
obtained by overlaying two FSs of the crystal unit cell. The high-
symmetry points are indicated in brackets since they refer to the
crystal Brillouin zone. (b) Calculated FS of the 2 × 1 × 1
supercell in the ground-state structure. (c) Calculated FS of
the 2 × 1 × 1 supercell after displacing the atoms according to the
Bu phonon mode at M, so as to place the structure in one of the
minima of the double-well potential.

FIG. 4. (a) Energy distribution of the superconducting gap Δk
of 2H-NbS2 as a function of temperature, calculated within the
anisotropic ab initio Migdal-Eliashberg theory including Cou-
lomb interactions. The colors indicate data belonging to different
Fermi surface sheets. (b) Calculated DOS in the superconducting
phase of 2H-NbS2 (black lines), compared with tunneling data
from Ref. [14] (green circles), for T ¼ 1.8 K and T ¼ 4.0 K. In
both panels, to facilitate comparison with experiment, the
theoretical temperature and gaps were scaled by the factors
5.7=18.6 and 0.97=4.2, respectively.
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The regions of the Fermi surface with the largest
superconducting gap coincide with the hot spots of the
electronic EPI parameter λelk, as shown in Fig. 5(c). In
particular the EPI strength on the Γ-centered pockets
exhibits a narrow distribution around λelk ¼ 0.8–0.9, while
that on the K-centered pocket covers the wide range from
λelk ¼ 0.6 to λelk ¼ 3.0. The resulting average EPI parameter
is λel ¼ 1.46. We emphasize that, while λphk;ν (Fig. 2) and λ

el
k

(Fig. 5) are related, they are not the same quantity. A
detailed discussion of these quantities can be found in
Ref. [55]. From this analysis it is clear that the two
anharmonic modes contribute significantly to creating
electron-phonon hot spots on the triangular arcs of the
Fermi surface. While no charge ordering has been observed
in 2H-NbS2 thus far, our findings clearly indicate that the
EPI with the anharmonic phonons places this system very

close to a lattice instability [56]. This conclusion is further
supported by the Fermi surface contribution to the adiabatic
phonon self-energy [57] presented in Fig. S6 of the
Supplemental Material [38]. Based on these considerations
we propose that superconductivity in 2H-NbS2 is driven by
the same EPI that underlies a “latent” CDW instability, i.e.,
a CDW that is possibly quenched by quantum fluctuations.
We now come back to the overestimation of the

measured critical temperature in our calculations. At
present it is unclear whether this overestimation relates
to an inadequate description of anharmonic effects, to the
use of the Migdal approximation, to the approximate
treatment of retardation effects, or to the assumption of
a constant DOS near the Fermi level in the Eliashberg
theory [24]. In order to test the sensitivity of our results to
some of these effects, we repeated our calculations (i) by
varying the frequency of the anharmonic modes, and (ii) by
varying the DOS via a rigid shift of the Fermi level.
Figure S7 of the Supplemental Material [38] shows that
our calculated Tc is insensitive to the frequency of the
anharmonic modes over a wide range; therefore, we can
exclude this scenario. In contrast, Fig. S8 of the
Supplemental Material [38] shows that the critical temper-
ature is in better agreement with experiments if we raise the
Fermi level by only 200 meV. Motivated by this observa-
tion we performed quasiparticle GW calculations of the
band structure of NbS2 [26,27,55,58–60]. Figure S9 of the
Supplemental Material [38] shows that GW quasiparticle
corrections reduce the DOS at the Fermi energy by 18%
with respect to our DFT calculations. By repeating our
Eliashberg calculations with the corrected NF and μ� we
find that the critical temperature also decreases by 18%.
For completeness the superconducting gap calculated after
including quasiparticle corrections is shown in Fig. S10 of
the Supplemental Material [38]. Our most accurate value,
Tc ¼ 15.3 K, is in better agreement with experiment.
In conclusion, we used the anisotropic ab initio Migdal-

Eliashberg theory including Coulomb interactions to
elucidate the nature of the superconducting pairing in
2H-NbS2. Our calculations indicate that a large contribu-
tion to the pairing comes from EPI hot spots on the
triangular Fermi surface arcs, which signal a latent
CDW instability. We successfully explained tunneling
measurements in terms of two superconducting gaps, a
large one associated with in-plane Nb orbitals, and a small
one related to the out-of-plane orbitals of Nb and S. More
generally, our work highlights the importance of determin-
ing accurate low-energy band structures and Fermi surfaces
beyond DFT in order to achieve a fully ab initio description
of the pairing mechanism in TMDs.
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