PRL 119, 085502 (2017)

PHYSICAL REVIEW LETTERS

week ending
25 AUGUST 2017

Stiffness Percolation in Stochastically Fragmented Continua

Anirban Pal and Catalin R. Picu’
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute,
Troy, New York 12180, USA
(Received 25 April 2017; published 25 August 2017)

We study the mechanical behavior of three-dimensional, randomly microcracked continua for crack
densities up to and above the transport percolation threshold. We show the existence of a fully fragmented
material state in which stiffness is preserved due to topological interlocking of fragments. In this regime,
the mechanical behavior is controlled by the contacts between fragments and becomes nonlinear. The upper
limit of crack densities for which this behavior is observed, the stiffness percolation threshold, is identified.
The variation of the effective material stiffness for crack densities ranging from O to the stiffness percolation

threshold is reported.
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Rigidity percolation has been studied extensively in
random networks [1-3], granular media, and foams [4,5].
It had been shown early [6] that rigidity percolation is not
necessarily identical to transport percolation. In random fiber
networks, the transition is continuous in both the bulk and
shear moduli [1,2,7], while the jamming transition exhibits
continuous and discontinuous behaviors for shear and bulk
moduli, respectively [4,8—10]. The stiffness percolation
threshold in random networks of fibers depends on the type
of interactions. If filaments store energy in both the axial and
bending deformation modes, the network acquires rigidity at
the transport percolation threshold, while when the bending
mode is disabled, stiffness percolation happens at higher
densities than transport percolation [11].

Continua with large density of microcracks are expected
to share some of these features. Although the effective
properties of diffusively microcracked continua have been
evaluated for relatively small densities of microcracks, e.g.,
[12], the behavior as the crack density approaches the fully
fragmented state has been poorly investigated to date [13].
It is generally believed that when the crack density is so
large that the sample becomes fragmented, i.e., divided in
multiple components by contiguous cracks, the material has
zero tensile stiffness [13]. This has been recently shown to
be incorrect in two dimensions (2D), with the crack density
at which stiffness vanishes, f., , being larger than that
corresponding to transport percolation, f., [14]. In 2D the
crack density at which fragmentation takes place, fr, is
identical to the transport percolation threshold.

Here we identify the transport percolation, fragmentation,
and stiffness percolation thresholds in the three-dimensional
case and show the existence of a regime in which the material
is fully fragmented but preserves stiffness. The stiffness of
the body is nonzero due to topological interlocking of
fragments. This state of matter is distinct from the granular
state due to the presence of tensile stiffness and ordered
arrangement of fragments. The material behavior becomes
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nonlinear, even though the constitutive behavior of the
fragments is linear, due to the important contribution of
contacts to the overall mechanics. Emergence of nonlinear
behavior close to critical points is observed in other systems
and phenomena [15]. The notion that a material can be both
hard towards indentation while soft in bending is not
intuitive, and can be realized using highly microcracked
continua, where compliance in tension and bending is a
manifestation of fragment interlocking [14], while the
response to indentation is provided by individual fragments.

Recently, artificial mechanical metamaterials have been
studied due to their novel properties stemming from careful
design of their substructures [16,17]. Interlocking was
recently used to produce such a class of metamaterials
whose behavior is controlled by the contacts between
components and depends less on the constitutive behavior
of individual components. These studies considered assem-
blies of identical and periodically arranged interlocking
objects held together either by their shape or by a confining
pressure [18-21]. Such assemblies are damage tolerant, as
any load-induced crack is trapped at the interfaces between
components [22,23]. Porous superlattice has been created
by the topological interlocking of self-assembled nanoscale
octapods [24]. Interlocking of asperities across an interface
with otherwise poor adhesion may lead to increased
opening strength and is known to increase the mode II
fracture toughness when the interface is loaded in shear
[25]. The present study shows that interlocking occurs
naturally in materials with stochastic cracking patterns and
the effect can be obtained without the need to artificially
assemble identical components. This is believed to be the
case in naturally occurring itacolumite, which is a sand-
stone [26]. This rock is composed from roughly equiaxed
grains that form clusters that are separated by gaps of
micron-scale thickness. The gaps allow the relative motion
of the clusters that conveys flexibility to the rock on the
macroscopic scale. However, the rock has nonzero tensile
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stiffness due to cluster interlocking. A movie demonstrating
this behavior is presented in [14]. Such observations
motivated efforts to develop flexible ceramics [27].
These are obtained by subjecting regular ceramic materials
to thermal shock, which leads to intergranular cracking.
The resulting microstructure mimics that of itacolumite
and is similar to the structures considered in this study.
Our results indicate the range of parameters in which a
continuum becomes flexible, while preserving finite stiff-
ness in both tension and compression.

We start with a face-centered cubic (fcc) lattice of N3
unit cells defined within a large cubic domain, D, of edge
size L, and construct a Voronoi tessellation using the lattice
sites as seeds, which leads to a packed tiling of identical
rhombic dodecahedra. The nearest-neighbor bonds of the
fcc lattice are normal to, and are bisected by, the bounding
faces of the corresponding Voronoi cells. Cracks are
introduced randomly on the faces of the tiling. The crack
density is defined by the fraction f of cracked faces; at
f =1 all Voronoi faces are cracked. The stochasticity of
the cracked structure emerges from the randomness of the
face-selection process, as the cell shapes and positions are
regular. This contrasts with the previous 2D study of the
equivalent problem [14], where stochasticity originates both
from the variability of the Voronoi cell shapes associated
with the random distribution of seeds in 2D, as well as from
the crack face-selection procedure. In polycrystals with weak
grain boundaries microcracking takes place stochastically
if the distribution of boundary strengths is broad and the
crack density is relatively low. Some degree of correlation
may exist in the case of narrow strength distributions and/or
higher crack densities when the nucleation process is
controlled predominantly by the local field fluctuations
induced by the microcracks themselves.

The transport percolation threshold, f.,, is defined as the
crack density at which a crack path connecting opposite
faces of the cubic domain, D, first forms. Here a crack path
is defined as a contiguous set of crack faces, each face
meeting its neighbors at its edges. Hence, this threshold is
equivalent to the site percolation threshold on a lattice
formed by the Voronoi face centers, which turns out to be
an edge-centered cubic lattice.

The fragmentation threshold, f, is defined as the crack
density at which opposite faces of the domain become
separated; i.e., there is no contiguous cluster of Voronoi
cells (Voronoi cells are contiguous if they share a face)
connecting opposite faces of D. Note that the crack density
f=1—f*, where f* is the bond density on the dual of the
Voronoi tessellation (face-centered lattice). Hence, the
fragmentation threshold corresponds to the bond percola-
tion threshold on the dual (f}.,) and fp=1-—f} .
Although the fragmentation threshold is not a critical point
for stiffness, it can be a critical point for phenomena that
are reliant on the existence of percolating clusters, such as
electrical or thermal conduction in materials with high
interface resistance.

FIG. 1. Minimum-cut (minimum overhang) cleavage surface
for a sample with N =30 and f = fr = 0.88. Red and blue
indicate subdomains on the two sides of the minimum-cut
surface, which are shifted horizontally for clarity. The cracks
not comprising the minimum cut are not shown for clarity. The
insets show details of a few overhangs.

The two geometric thresholds f.. and f can be evaluated
using results from graph theory [28]. The transport perco-
lation threshold, f ., is not directly relevant to the present
discussion, but is reported in order to outline the distinction
with f . For the lattice used here, f. = 0.28, which is close
to the site percolation threshold for the body centered cubic
lattice (which has the same coordination number of 8) of
0.246 [29,30]. The fragmentation threshold, fr, is estimated
based on the bond percolation threshold for the fcc dual
lattice, f}.,q = 0.12[29],and hence fr =1 — f7 4 = 0.88.

We evaluate the stiffness percolation threshold, f ., , in two
steps. First, we define a geometric measure of interlocking in
order to obtain a geometric approximation of the threshold,

?,- In the second step, we investigate the variation of the
stiffness in the vicinity of the geometric estimate of f,.

By definition, for f > f there exists a nonempty set S of
cleavage surfaces S = {CS;, CS,, ...} separating opposite
faces of the domain [say, the left face 90X, (x = 0) and right
face 0X; (x = L) in Fig. 1], where a cleavage surface is
defined as a contiguous (edge sharing) set of crack faces that
span the cross section of the domain, i.e., yz plane in this
case, and do not touch 90X, or 0X;. An overhang parameter,
m, can be defined for each such surface, based on the
normalized projected area of the surface on the yz plane,

; ZjeCSi |ajnj-n1|

ml = —L2 s (1)

where a j and n jare the area and unit normal of a crack face
belonging to the cleavage surface CS;, n; is the unit normal
oriented in the x-direction, and L? is the area of the cross

085502-2



PRL 119, 085502 (2017)

PHYSICAL REVIEW LETTERS

week ending
25 AUGUST 2017

section of the model perpendicular to n;. If the cleavage
surface has no overhangs, m’ = 1, while otherwise m’ > 1.
Note that m' = 1 does not imply that the cleavage surface is
planar. The minimum of m’ over the population of cleavage
surfaces S, m = min,;{m'}, represents the geometric measure
of interlocking associated with the x-direction. If m = 1,
there is no such interlocking and the structure can bear no
tensile stress in the x-direction (see Fig. A2 in Supplemental
Material [31]). To evaluate m, a graph is first created with
nodes corresponding to the lattice points and bonds corre-
sponding to the nearest-neighbor bonds. We now proceed to
create a capacitated network [32] for our problem. All bonds
are given an initial capacity of infinity. Further, based on the
crack density fraction f, some bonds are randomly selected
and given a capacity corresponding to their projected area
(given by its dual Voronoi face) on the y-z plane, |a;n;.n,|.
Thus, if the total number of bonds (or Voronoi faces) is Np,
then fNp are cracked and have capacities corresponding to
their projected areas, while (1-f)Np bonds have infinite
capacities. A source node is attached to the graph with
additional bonds connecting it to all the nodes (lattice points)
lying on the left face of the domain, 90X, while a sink node is
similarly attached with additional bonds connecting it to the
right face of the domain, 9X. These source or sink bonds
have infinite capacities. Next, the max flow in the graph from
source to sink is computed by the Boykov-Kolmogorov
algorithm [33] provided as a part of the BOOST library [34].
By the max-flow min-cut theorem [28], this also identifies
the minimum cut that separates the source and the sink. As a
consequence of the way the weights are defined, the max flow
is equal to mL? [35] and the min cut corresponds to the
cleavage surface with minimum interlocking. Further details
are provided in Supplemental Material [31]. As indicated
above, the variation of the replica-averaged m, m, with f
provides a geometric estimate of the stiffness percolation
threshold, f ., . This problem bears close resemblance to first
passage percolation in 2D [36], which has been generalized
to higher dimensions [37,38].

The variation of the interlocking parameter, m — 1, with
crack density f is shown in Fig. 2. Models of three different
sizes are considered, with N = 50, 70, and 100. (m — 1) is
nonzero for fr < f < 0.95 but decreases rapidly to O at the
upper end of this interval. This indicates the presence of
overhangs that lead to interlocking. The variation of
(m—1) in the vicinity of the point where this quantity
vanishes is shown in log-log coordinates in the inset to
Fig. 2. For the largest system considered, with N = 100,
we observe that m — 1 ~ (f, — f)?, where the geometric
estimate of f,, f2., and the exponent y are treated as free
parameters. The inferred values f7, = 0.945 + 0.001 and
y = 2.90 4+ 0.24 lead to the power function shown in the
figure. This represents an upper bound for f. ., as the
structure cannot provide resistance to tensile loads if
the minimum cut surface has no interlocking.

The stiffness of the microcracked continuum is estimated
by modeling it as an elastic spring network on the underlying
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FIG. 2. Average interlocking parameter /n — 1 for the mini-
mum-cut surface as a function of crack density f and for several
model sizes, N. The model size does not affect significantly m
close to the critical point where m — 1 = 0. For f < fr = 0.88 no
cleavage surface exists, and /7 is not defined. For fr < f < 1 at
least one cleavage surface exists that may exhibit interlocking.
The inset shows a power law fit to the data with exponent y =
2.90 and fY, = 0.945, which is a geometric estimate of the
stiffness percolation threshold f, .

fcc lattice. Harmonic potentials are used to model nearest-
neighbor bonds and nearest-neighbor angles such that the
model corresponds to a material with cubic anisotropy.
Interactions across cracked surfaces are modeled with the
bonds replaced by purely repulsive Lennard-Jones inter-
actions with cutoff equal to the nearest-neighbor distance in
the underlying fcc lattice. These model cracks of zero
thickness in the unloaded state. One face of the cubic domain
is held fixed, while the opposite face is displaced. Traction-
free boundary conditions are applied on all other model
faces. Since at large values of f fragments from the free
surfaces may detach, we prevent this outward rigid body
mode by confining dilatation in the directions perpendicular
to the tensile loading direction. The values of all material
parameters used are provided in Supplemental Material [31].

The variation of the stiffness of the microcracked
continuum with f is shown in Fig. 3 for the entire range
of f, from O to 1, and for models with N = 30. At low crack
densities, when f — 0, the effective modulus is weakly
dependent on the crack density. Various estimates are
available in the literature for this range [12]. The continu-
ous line corresponds to a model with randomly oriented
noninteracting cracks that predicts E./Eq = 1/(1 + pf),
where E. is the effective stiffness of the structure
measured in uniaxial tension. The values of f and E,
are discussed in Supplemental Material [31]. Alternative
approaches to handling crack-crack interaction and non-
linearities introduced by crack closure have been developed
in the damage mechanics literature [39].

For f > fp, the structure is loaded primarily via the
contacts at the interlocked surfaces, but the overall strain
energy is still a quadratic function at small strains and hence
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FIG. 3. Variation of the effective tensile Young’s modulus E g
(blue circles) and shear modulus G (green squares) of the
structure, normalized by the corresponding moduli of the
uncracked material, versus the crack density (f) for a model
with N = 30. At low densities (f < 0.3), the variation for E g
is represented well by E.;/Ey = 1/(1 + ff), with f = 2.6 [12].
At f = fr =0.88 the crack density is high enough for frag-
mentation to occur; beyond this point the structure is loaded via
topological interlocking of the irregularly shaped fragments. At
S =fc, =0.945 £ 0.005 Young’s modulus vanishes (stiffness
percolation threshold). The inset shows the variation of E.g; with
the distance to f,, for systems with N = 30 (black) and N = 50
(red). The shear modulus does not exhibit critical behavior. The
range of crack densities marked in gray in the main figure
represents the state in which the material is fully fragmented
but preserves stiffness due to topological interlocking.

E is well defined in this limit. We identify the stiffness
percolation threshold by fitting a power law of the form
(Eetr/Eo) = (fcg — f)* to the blue circles in Fig. 3 (black
symbols in the inset to Fig. 3). The fit leads to fcp =
0.945 £ 0.005 and a = 3.24 4+ 0.42. Although this thresh-
old is similar to the geometric estimate, the scaling exponent
is different from the geometric exponent y. This is not
surprising as the geometric overhang is a measure of only the
minimum-cut surface, while the stiffness is a global measure
that depends on all loaded interfaces in the structure. For
f > fc,, the cleavage surfaces have no overhangs and the
structure has no stiffness.

The important result here is the existence of a range of
crack densities, fr < f < f¢, (shown in gray in Fig. 3), in
which the structure, although fragmented, exhibits at small
strains a quadratic strain energy function and well-defined
(but different) elastic moduli in both tension and compres-
sion. Such samples are neither continua nor jammed granular
packings.

The shear modulus was evaluated for all systems shown
in Fig. 3 by applying a simple shear loading to the model.
Interestingly, the shear modulus is finite at f.,  and the
value at the threshold is only 56% smaller than the bulk
shear modulus of the uncracked material, G,. This is
expected as the fully cracked state (f = 1) corresponds

6

'
N

H 5]
T T
Logyo(f)
T
. \
o
% e
1 | I

T
f=0.900 —&—
f=0.905 — % —
f=0.910 —6— |
f=0.915 —@—
£=0.920 —A—

f=0.925 —A—
f=0.930 G

.

w
®
<

0.01

Normalized Stress (x1073)
N w

-y

0 1 2

3
Strain (x1073)

FIG. 4. Stress-strain curves for systems with various f values in
the regime of interlocking. The vertical axis is normalized by the
effective modulus, E, reported in Fig. 3. The inset shows the
scaling of the strain at peak stress near f,.

to a close packed and ordered frictionless granular system
of rhombic dodecahedra. The Young’s modulus measured
in compression is identical to the modulus of the uncracked
material. Hence, the system exhibits behavior compatible
with both the first and second order phase transitions,
similar (but not identical) to the jamming transition [8—10].
To demonstrate the evolution of the material behavior as
f increases in the interlocking regime, fr < f < f.,
Fig. 4 shows the stress-strain curves evaluated for several
models. The stress is normalized by E reported in Fig. 3
such that all curves have slope 1 at small strains. At the
fragmentation limit f = fr = 0.88 (and below), the behav-
ior is linear elastic, as expected. As f increases, inter-
locking of fragments provides stiffness at small strains,
but disengagement occurs at larger strains leading to a peak
in the stress-strain curve. The peak shifts to smaller strains
and stresses as f increases. The curve converges to the
horizontal axis at f = f ., (Fig. 3). The strain at peak stress
exhibits also a power law scaling for values of f near f. ,
ep ~ (fcg — f)%, with @, = 1.17 (see inset to Fig. 4).
The size effect was studied by using models of different
sizes, with N ranging from 30 to 100 for the geometric
estimate f‘ZE, and from 30 to 50 for the mechanical estimate,
fe,- Both parameters are weakly sensitive to the model size.
The size effecton f7, is shown in Fig. 2 and the inset to Fig. 3.
In this study, we demonstrate the existence of a fully
fragmented material state resulting from increasing density
of microcracks in which the material preserves stiffness
due to the interlocking of fragments. The stress-strain curve
in this range is nonlinear, despite the fact that the bulk
material behavior is linear elastic. The analysis provides the
range of crack densities in which this behavior is expected,
which can be used to guide experiments aimed at producing
stochastically interlocked materials. Such materials pre-
serve stiffness and are resilient relative to additional
damage produced by localized loading or thermal shock.
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