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Many values of the observed conductivity percolation exponent t cannot be explained by the classical
universal theory or by the existing nonuniversal theories. In particular, the 1.3 ≤ t ≤ 4.0 clustering of t values,
in both composite materials and porous media has not been accounted for. In this work we were concerned
with a pseudononuniversal percolation behavior that, unlike the genuine nonuniversal behavior, explains the
statistics of the experimentally observed percolation conductivity exponents in continuum systems.
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It is well established by now that the electrical conduc-
tivity σ in a two-phase disordered system is given by [1–9]

σ ∝ ðx − xcÞt; ð1Þ

where x is the fractional volume of the conducting phase in
the system, xc is the observed threshold for the onset of the
conductivity and t is an exponent. By the universality of
percolation as a phase transition, t is expected [1,4], and in
many cases observed [3–11], to have the “universal” value
μ that is well established in the theory of lattice percolation
[12]. Hereafter, we use μ to denote either of its two
dimensional μð2DÞ ≈ 1.3 or three dimensional μð3DÞ ≈
2.0 values. In 1979 Kogut and Straley (K&S) [13] have
shown (see SM1 in the Supplemental Material [14]) that t
will be larger than μ if the values of the local conductances
in the system g have a distribution that diverges as g → 0.
Following this “K&S effect” it was shown that the tunnel-
ing between conducting particles in composites [15] and
the bottlenecks between the nonconducting elements in
porous media [16] can bring about such a nonuniversal
t > μ behavior. In particular, for the composites, in prin-
ciple, the t > μ values have no bound [15], while for porous
media [16], in 2 dimensions t ¼ μð2DÞð¼1.3Þ and in 3
dimensions t cannot exceed μð3DÞ þ 1=2ð¼2þ 1=2Þ.
Indeed, t ¼ μ values and t > μ values were found in

many continuum systems. However, examining in more
detail the available t-value statistics in experimental works,
on composites [6,7,9] and porous media [17,18], and in
simulation studies [19–23], reveals that the many t > μ
values have specific bounds that cannot be accounted for by
the K&S [13], or deviation from isotropy [24], effects.
The principal characteristics of the t-value statistics are as

follows (for more details see SM2 in Ref. [14]). For
composite materials [6,7] it was concluded that “t is
predominantly in the range 1.3–4 peaking around 2” [7].
While for those systems one can attribute t > μ values to the
K&S effect [15], this effect cannot explain the sharp drop in
the number of observed t values at the particular value of

t ¼ 4.0. For porous media [17,18] the t exponent “has been
found to vary anywhere between 1.3 and 4 depending upon a
variety of factors” [17]. The t ¼ 4.0 bound in those media is
even harder to explain because of the above t ≤ 2.5, K&S
value, limitation [16]. Themost striking fact is that the above
1.3 ≤ t ≤ 4.0 clustering is the same for such a priori, very
different kinds of systems. Moreover, one finds (see SM3 in
Ref. [14]) that there is a subclustering of t values in the 1.3 ≤
t ≤ 2.6 and 2.0 ≤ t ≤ 4.0 ranges in both types of systems
[6,25–28], which again, has no explanation within the
framework of the above effects. All these imply that there
is another source for these t-clustering phenomena and this
source is more abundant than the K&S [13] and other
possible t > μ effects [23,24] (see more in SM2 and SM3
in the Supplemental Material [14]).
In this Letterwe explain the above t clusteringby adding to

the previous universal [12,29,30] and nonuniversal [4,13–
16] theories a “unified” theory of percolation conductivity
that applies to both lattices and continuum. As our theory
considers t values for an x range somewhat removed from xc,
we call the t values predicted by it the pseudononuniversal
exponents. Our explanation is based on showing that these
pseudoexponents can reach values as high as 2μ, provided
that the x range studied is below the x value for the onset of
the effective medium conditions. We start then by consid-
ering the transition from the percolation-scaling regime to the
effectivemedium regime in both the bond percolation and the
site percolation problems. Next, we derive the behavior
expected when the bonds in the lattice constitute the local
conductances but the available information is given in terms
of the site occupation probability. This is followed by
showing how corresponding considerations in continuum
systems lead to the understanding of the above described
t-values clustering.
Since the electrical conductivity in lattices is a bond

related problem [12,29,30] its percolation dependence is
given by [1–5]

σ ∝ ð1=RbÞðpb − pbcÞμ; ð2Þ
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whereRb is the resistance associatedwith any occupied bond,
pb is the occupation probability of that bond, and pbc is its
critical (percolation threshold) value. One notes here that the
meaningful measure for the deviation of pb from pbc is given
by the normalized pdb ≡ ðpb − pbcÞ=pbc parameter [19,31].
While Eq. (2) [12] and the K&S effect [13,14,32] are

associated with the asymptotic pb → pbc scaling-critical
regime [12,30], the deviation of pb from pbc gives way to
the regime of the well-known effective medium approxi-
mation (EMA) [8,17,33–35], where

σ ∝ ð1=RbÞðpb − pbecÞv: ð3Þ

Here, v≡ 1, is independent of the type of lattice and
dimension and pbec is the predicted EMA threshold (where
pbec ≥ pbc). For the present work the important point is that
the transition between the two regimes is continuous and
smooth [33–35] and that the details of the transition are
system dependent (see SM4 in Ref. [14]).
In Eqs. (2) and (3) the resistors Rb were attached to

lattice bonds. As illustrated in Fig. 1 one can, however,
attach the resistors to sites with an occupation probability
ps [17,33,36]. An occupied site can be described by four
resistors of an Rs=2 value each. If two adjacent sites are
occupied there is a bond with a resistance Rb between them.
Following the expected [4,12,29,30,37] scaling-critical
behavior of the conductivity and its experimental [1,38]
and computational [24,33,34] confirmations, one con-
cludes that as the conductivity of the bonds-only system

(Rs ¼ 0) is given by Eq. (2), the conductivity of the sites-
only (Rb ¼ 0) system will be given by [33,37]

σ ∝ ð1=RsÞðps − pscÞμ; ð4Þ

where psc is the sites percolation threshold.
Let us examine now the conductivity when the resistors

are attached to the bonds, or Rb ≫ Rs, but we want to (or
we can only) express the conductivity in terms of ps, as
done first by Adler et al. [38]. Being concerned below with
continuum systems we illustrate in SM5 [14] a possible
corresponding porous medium. For lattices, however, we
know that the relation pb ¼ p2

s applies to any lattice and
any dimension [17,33,39]. This well-known relation fol-
lows intuitively [40] from the fact that for a lattice-spacing
bond to be occupied, its two end sites must be occupied. A
rigorous proof and a simulation confirmation of this
relation will be provided elsewhere. This pb ¼ p2

s relation
yields that, if we only know ps and Rb [38], we will have to
replace Eq. (2) by

σ ∝ ð1=RbÞðp2
s − p2

scÞμ ∝ ðps − pscÞμðps þ pscÞμ: ð5Þ

As expected [37] [and as in Eq. (4)], for ps → psc the
behavior is controlled by ðp − pcÞμ). Then, as ps departs
from psc but assuming that the effective medium conditions
did not set in, a σ ∝ p2μ

s dependence will be approached.
Following Eqs. (3) and (5), and as has been proven
rigorously by Sahimi [17], one would also expect that,
with a further increase of pb,

σ ∝ ðp2
s − p2

secÞv ¼ ðps − psecÞðps þ psecÞ; ð6Þ

where, psec is the corresponding threshold of the EMA site
problem.
The new results above are that while close to the

percolation threshold, the percolation dependences
[Eqs. (2) and (4)] apply, “far enough” from psc i.e., for pd ≡
ðps − pscÞ=pscÞ ≫ 1 (see the above definition for pdb) these
behaviors may sequentially approach the σ ∝ p2μ

s and the
σ ∝ p2v

s ≡ p2
s dependences [Eqs. (5) and (6), respectively].

We note here, however, that the largest possible ps=psc ratio,
in 2D and 3D lattices, can hardly fulfill the ps ≫ psc

requirement for the σ ∝ p2μ
s behavior [41]. On the other

hand, the range of psc ≤ ps ≤ 1 is usually enough for the
onset of the effective medium conditions [17,19,33–36]. For
the sake of argument, let us visualize then an imaginary
latticewith a site percolation thresholdpscil ≪ 1, so that there
is a ps regime where pscil ≪ ps, but ps is still small enough
(≪1) that the effective medium behavior has not dominated
yet the conductivity. In such a lattice, in addition to the well-
known expected [8,17,33] decrease of t with the increase of
ps fromμ tov≡ 1, somenew tðpsÞ scenarios, that dependon
the ps regime, may be found. In principle then, considering
the possible competition between the μ → 2μ [Eq. (5)] and

FIG. 1. An illustration of a segment of a square lattice where a
site is either occupied (full circles) or unoccupied (empty circles).
Each occupied site can be considered as made of four resistors
each of which has a value of Rs=2 so that to cross it the resistance
encountered is Rs. If two nearest neighbor sites are occupied there
is a bond between them with a resistance Rb that is illustrated by a
resistor in a red box. In principle, a “pseudononuniversal”
behavior can arise when Rb ≫ Rs but the conductivity is
monitored as a function of ps (rather than as s function of pb).
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the μ → vð≡1Þ [Eq. (6)] transitions, we conclude that the
following possible sequences of t-exponent transitions, or a
part of one of them,may be observedwith the departure ofps
frompscil. These are (a) μ → vð≡1Þ, (b) μ → 2μ → 2v → v,
(c) μ→ 2μ→ v→ 2v, (d) μ→ 2v→ v, and (e) μ → v → 2v.
The main result to be emphasized here is the (in

principle) possibility of the increase of the values of t
beyond μ, in particular the μ → 2μ transition [as in
scenarios (b) and (c)], in addition to the well-known
[8,17,33] decrease of t from μ to v ¼ 1 [scenario (a)]. In
Fig. 2 we illustrate then, schematically, the corresponding
expected tðpsÞ behaviors of scenarios (a) and (b). The
important novelty here is that unlike the t > μ values in the
K&S effect [13] the present results give t bounds that
cannot exceed 2μ (i.e., t ¼ 2.6 in two dimensions and
t ¼ 4.0 in three dimensions). This can provide then a clue,
for the t ¼ 2.6 and t ¼ 4 boundaries which we were set to
explain at the outset of this work (see also SM2, SM3, and
SM6 in Ref. [14]).
Following the above predictions, we turn from the above

imaginary behavior in lattices to the many continuum
systems of composites and porous media where xc ≪ 1
[42,43] and in which the scaling behavior was found to
extend to x ≫ xc [44–48]. To consider those systems we
use the well-known formal bridge of Scher and Zallen
(S&Z) [1,49,50] between lattice and continuum percolation
(SM5 in the Supplemental Material [14]). Indeed, in
accordance with this and the expectation from the

universality [4,37], one finds the fulfillment of Eq. (1)
with t ¼ μ and/or a σ ∝ ðn − ncÞμ dependence in numerous
continuum systems [3–7,10,11]. Here, n is the concen-
tration of the conducting particles or pores, in composites
or porous media, respectively, and nc is the relevant
threshold value. Correspondingly, in continuum systems
the proximity to the threshold can be given by xd≡
ðx − xcÞ=xc [5] or nd ≡ ðn − ncÞ=nc [19–22] (see SM5
in Ref. [14]) rather than by pd ≡ ðps − pscÞ=psc that is well
defined in lattices [19,31]. For our purpose then, systems
such as carbon nanotube (CNT) and graphene composites
are of interest since for these, very small xc (≪1), or very
large n=nc (≫1), values were found [22,44–48,51–55] and
explained [42]. Hence, these small xc values enable the
study of systems at x values that are small enough (x ≪ 1),
so that the onset of the effective medium conditions is not
appreciably manifested but, at the same time, they are large
enough (x=xc ≫ 1) so that scenarios (b) and (c) are
possible. Indeed, the universal t ¼ μð3DÞ value has been
obtained in many systems with x=xc > 10 values
[44–46,48,51,56], indicating the relatively wide extent of
the scaling-critical regime there. In particular, the increase
of t, with the decrease of xc, exactly within our predicted
boundaries of μð3DÞ ≤ t ≤ 4.0, as observed in Ref. [9],
appears to provide a strong support to our scenario (b).
Following that, we associate most of the many μð3DÞ <
t ≤ 2μð3DÞ ¼ 4.0 values, obtained in the case of
xdð≡x − xcÞ=xcÞ ≫ 1, [51,52,55,57] with this extension
of the critical regime (see SM2 in Ref. [14]). A similar
discussion for porous media will be given elsewhere.
For a simple transparent example of the possible mani-

festation of the (b)–(e) scenarios in composites in which the
xd ≫ 1, or the nd ≫ 1, condition is fulfilled, let us consider
a 2D system of line segment “sticks” [10,11,20,21] such as
those frequently used to represent CNT composites
[19–22,42]. In the sticks systems, as illustrated in Fig. 3,
we have a concentration of nst sticks and there are, say, on
the average, m intersections per stick. Doubling nst also
doubles m and thus the total concentration of the inter-
sections (hereafter the junctions) nj, will quadruple with
nst, i.e., nj ∝ n2st. This simple intuitive conclusion has been
confirmed in the simulations of Zezelj and Stankovic [21].
Considering the pb ¼ p2

s relation that we applied for
lattices we can establish now the ps ↔ nst and pb ↔ nj
analogs of the two systems. Letting nstc be the threshold for
the onset of conductivity, yields that nstd ¼ ðnst − nstcÞ=nstc
is the analog of pd and xd. However, unlike lattices and
latticelike systems (see Figs. 1, and SM1 and SM2 in the
Supplemental Material [14]), for slender (permeablelike
[42]) sticks there is, in practice, no limit to nst
[10,11,19,21]. Following that and the above analogy let
us start, as in Fig. 1, by assigning a resistance of the order
Rst to each stick and a resistance of order Rj to each
intersection. For Rst ≫ Rj, we have, as expected intuitively,
that the sticks are both the geometrical bonds and the

FIG. 2. The tðpsÞ dependence as concluded for real (red,
ps ≥ pscl, curve) and imaginary (blue, ps ≥ pscil, curves) lattices.
The pscl is the threshold of existing lattices and pscil is the
threshold of an imaginary lattice. The lower (red and blue-
dashed) μ → 1 curves illustrate the common ps ≥ pscl [scenario
(a)] behavior for both the bonds and the sites problems. The upper
(blue, ps ≥ pscil) curve represents the [scenario (b)] behavior for
an imaginary lattice of a very low percolation threshold when the
resistors are attached to the lattice bonds but the conductivity is
monitored as a function of ps. It is important to note that the
position of the peak and its specific shape depend on the details of
the onset of the effective medium conditions. The μ and the 2μ
(dotted) lines are separated, for the illustration, according to the
μð2DÞ ¼ 1.26 value.

PRL 119, 080601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

25 AUGUST 2017

080601-3



electrical bonds of the system [11], while the intersections
are the geometrical sites of the system. Hence, we expect
[11,37], as in Eq. (2), the classical dependence of
σ ∝ ð1=RstÞðnst − nstcÞμ, which leads to our scenario (a).
On the other hand if Rj ≫ Rst the dominant electrical bonds
in the system are the intersection junctions [10] (as in the
common intertube tunneling [7]) so that the conductivity is
given, as in Eq. (4), by σ ∝ ð1=RjÞðnj − njcÞμ, where njc is
the corresponding conductivity threshold. Considering
the above nj ∝ n2st relation, the above analog and the fact
that nst is, in practice, the only available known (or
“controllable”) parameter, we have, that

σ ∝ ð1=RjÞðnj − njcÞμ ∝ ð1=RjÞðn2st − n2stcÞμ: ð7Þ

In summary, while scenario (a) is expected for the Rst ≫
Rj case, for the combined case of Rj ≫ Rst [Eq. (7)] and the
available nd ≡ ðnst − nstcÞ=nstcÞ ≫ 1, we can expect one of
the (b)–(e) scenarios. Indeed, simulations of the corre-
sponding systems [19–22] (see SM6 in Ref. [14]) have
shown the fulfillment of scenario (a) for the Rst ≫ Rj case
and the increase of t with the increase of nst beyond μ
[19–22] (even up to t ¼ 2μ [57]) for Rj ≫ Rst. In fact, the
continuous variation from scenario (a) to scenario (b) with

the increase of the Rj=Rst ratio has been found in
Refs. [20,21]. This suggests that the same conclusions
apply to CNT and graphene based composites [42]. The
important point to note here is that in all those simulations
no g-value distribution [13–16], no change in system
dimensions, and no anisotropy [23,24] were introduced
and thus, the t > μ results cannot be attributed to either of
those effects. In contrast, our present approach provides a
general-wide framework since it accounts, by scenarios
(b)–(e), for the majority of the observed t > μ values in the
continuum, up to and including 2μ ¼ 2.6 (in 2D) and 2μ ¼
4.0 (in 3D) values. That these are the majority t values, is
proven by the fact that the statistics of all the above
experimental [6,7] (see SM2 [14]) and computational data
[19–22,57] (see SM6 [14]) exhibits the clustering of the
values in the μ ≤ t ≤ 2μ range, and that there is already
available experimental evidence [9] for our prediction that
the smaller the threshold the more likely the observation of
scenarios (b) or (c). The fact that the same clustering
applies to porous media [17] (as will be discussed else-
where) provides then a firm support to our site-bond like
models for the pseudononuniversal t values in many
continuum systems.
In conclusion, combining the present results with the

previously known universal and nonuniversal theories
appears to provide now a wholesome framework for the
understanding of the critical conductivity in numerous
composite materials and porous media.
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