
Entanglement is Necessary for Emergent Classicality in All Physical Theories

Jonathan G. Richens,1,2,* John H. Selby,1,3 and Sabri W. Al-Safi4
1Controlled Quantum Dynamics theory group, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom

2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
3Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom

4School of Science & Technology, Nottingham Trent University, Burton Street, Nottingham NG1 4BU, United Kingdom
(Received 11 October 2016; revised manuscript received 10 June 2017; published 24 August 2017)

One of the most striking features of quantum theory is the existence of entangled states, responsible for
Einstein’s so called “spooky action at a distance.” These states emerge from the mathematical formalism of
quantum theory, but to date we do not have a clear idea of the physical principles that give rise to
entanglement. Why does nature have entangled states? Would any theory superseding classical theory have
entangled states, or is quantum theory special? One important feature of quantum theory is that it has a
classical limit, recovering classical theory through the process of decoherence. We show that any theory
with a classical limit must contain entangled states, thus establishing entanglement as an inevitable feature
of any theory superseding classical theory.
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Introduction.—Entanglement and nonlocality are two of
the features of quantum theory that clash most strongly
with our classical preconceptions as to how the Universe
works. In particular, they create a tension with the other
major theory of the twentieth century: relativity [1]. This is
most clearly illustrated by Bell’s theorem [2,3], in which
certain entangled states are shown to violate local realism
by allowing for correlations that cannot be explained by
classical causal structures [3]. In this Letter we ask whether
entanglement is a surprising feature of nature, or whether it
should be expected in any nonclassical theory. Could a
scientist with no knowledge of quantum theory have
predicted the existence of entangled states based solely
on the premise that their classical understanding of the
world was incomplete?
Any such scientist could reasonably postulate the exist-

ence of a classical regime—in that whatever theory
describes reality must be able to behave like classical
theory in some limit. Although this is a very natural
assumption, given that we frequently observe systems
behaving classically, we show that it imparts very strong
constraints on the structure of any nonclassical theory.
Indeed in Ref. [4], Landau and Lifshitz noted. Quantum
mechanics occupies a very unusual place among physical
theories: it contains classical mechanics as a limiting case,
yet at the same time it requires this limiting case for its own
formulation.
Thus to answer these questions, we explore all theories

that have a classical limit [5,6]. This is formalized in
quantum theory by decoherence maps, which take quantum
systems to semiclassical states with respect to some basis.
Physically, decoherence maps represent a quantum system
interacting with some inaccessible environment resulting in
the loss of quantum coherences. Inspired by this, we

develop a generalization of decoherence maps for
arbitrary operationally defined theories (see Refs. [7–9]
for a related process-theoretic approach). We consider all
theories that can decohere to classical theory and show that
any such theory either contains entangled states or is
classical theory. Thus, the existence of these classically
counterintuitive entangled states present in quantum theory
can be understood as arising from, and being necessary for,
the existence of a classical world. This result hints towards
the possibility that other counterintuitive features of quan-
tum theory could be derived from its accommodation of a
classical limit, and paves the way for deriving the features
of postclassical and postquantum theories from the exist-
ence of this limit.
The outline of this Letter is as follows. In the following

section we discuss the framework, describe the minimal
characteristics expected of the generalized decoherence
map, and introduce the class of theories that can exhibit a
classical limit through decoherence. In the results section
we formally state and outline a proof of our result and in the
conclusion section we discuss the physical significance of
our result. All technical proofs are given in the correspond-
ing Supplementary Material.
Setup.—To begin to pose questions about how different

physical features of theories relate we makes use of the
generalized probabilistic theories (GPT) framework
[10–13], which is broad enough to describe any operational
description of nature. The framework is based on the idea
that any physical theory must be able to predict the
outcomes of experiments, and, moreover, that the theory
should have an operational description in terms of those
experiments. This framework is broad enough to describe
arbitrary operationally defined theories including but not
limited to quantum and classical theory. We provide a brief

PRL 119, 080503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

25 AUGUST 2017

0031-9007=17=119(8)=080503(5) 080503-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.080503
https://doi.org/10.1103/PhysRevLett.119.080503
https://doi.org/10.1103/PhysRevLett.119.080503
https://doi.org/10.1103/PhysRevLett.119.080503


introduction to the framework and our notation below. For a
full introduction to this framework see Refs. [10,11].
A primitive notion in this framework is the idea of a

system S, corresponding, for example, in quantum theory
to an n-level quantum system. Such a system can be
prepared in a variety of ways and so has an associated set of
states ΩS . One can perform measurements on the system to
determine which state it has been prepared in, and the
measurement outcomes are known as effects e ∈ ES, which
are maps e∶ΩS → ½0; 1�, determining the probability that
outcome e is observed given the system was in state s.
Moreover, there will generally be transformations T ∈ T S
that can be applied to the system; note that if s ∈ ΩS then
T∘s ∈ ΩS and, moreover, that if e ∈ ES then e∘T ∈ ES.
Transformations are said to be reversible T ∈ GS if T−1 is
also a valid transformation where T∘T−1 ¼ 1 ¼ T−1∘T.
Based on operational ideas we find that these sets of

states, effects, and transformations have much more struc-
ture. Specifically, the state space has the structure of a
finite-dimensional convex set. Convexity corresponds to the
idea that if one can prepare a system in state s1 or s2 then it
should be possible to prepare a probabilistic mixture of
these two states, for example, conditioned on the outcome
of a biased coin flip. If a state can we written as a convex
combination of other states ρ ¼ P

ipisi we say that si
refines ρ (denoted si≻ρ ∀ i [11]). States that cannot be
refined by any other states are called pure, otherwise
they are called mixed. Not all of the well-defined measures
of purity in quantum and classical theory will translate to
general theories, but there is a sufficient condition for if
one state is purer than another that applies to all convex
theories. In general, if state σ can be written as a
probabilistic mixture involving ρ, but not vice versa
(e.g., ρ≻σ, σ⊁ρ), then ρ is strictly purer than σ.
Operationally, σ can be prepared by an experiment that
prepares a probabilistic mixture of states including ρ, but
the converse is not true for ρ.
Finite dimensionality comes from the requirement that it

should be possible to characterize the state of a system by
performing only a finite number of distinct experiments.
Moreover, this state space is typically assumed to be
compact and closed. Transformations and effects should
respect this convex structure, for example, probabilistically
preparing state s1 or s2 followed by applying some trans-
formation T should be operationally equivalent to proba-
bilistically preparing state T∘s1 or T∘s2. This implies that
transformations and effects should be linear maps.
It is typically useful not to only consider the physical

states of the system, but also to consider sub- and super-
normalized states. This extends the state space from a
convex set ΩS in a d-dimensional vector space to a convex
cone KS living in a dþ 1 dimensional vector space. The
state space ΩS is recovered by enforcing normalization via
the deterministic effect uS . That is that states s ∈ KS are
normalized, and thus belongs to in ΩS, if uSðsÞ ¼ 1,

subnormalized if uSðsÞ < 1 and supernormalized other-
wise. Effects now extend to linear maps e∶KS → Rþ and
transformations extend to linear maps on the cone.
Reversible transformations, therefore, must be automor-
phisms of the cone that preserve the normalized state space.
Beyond these minimal assumptions, we place no further
constraints on the state space ΩS, which can take the form
of arbitrary convex sets (see the Supplemental Material
[14], for example). In the statement of our results we use the
notion of the faces of a convex set. These are defined in the
Supplemental Material [14] but can be understood intui-
tively as the convex subsets that form the boundary of the
convex set. For example, for the three dimensional cube the
faces are the squares, edges, and vertices on the boundary
of the cube.
The above is best illustrated with examples, the key

examples here being quantum theory and classical prob-
ability theory. Given an n-level quantum system the convex
cone is given by the set of positive semidefinite Hermitian
matrices and the deterministic effect by the trace, such that
normalized states are density matrices. Given an n-level
classical system the convex cone is given by real vectors
with non-negative entries and the deterministic effect by
the covector with all entries 1 such that normalized states
correspond to probability distributions over an n element
set. Effects are then linear functionals on these cones
in quantum theory corresponding to POVM elements
and in classical theory to covectors with elements ≤ 1.
Transformations are then linear maps between these cones,
in quantum theory corresponding to CP maps and in
classical theory to substochastic matrices. Reversible trans-
formations are then cone automorphisms that preserve the
normalized states; in quantum theory these will be unitary
transformations and in classical theory permutations of the
underlying set.
There is a final key aspect of a theory that we are yet to

discuss, and that is how to form composite systems. Given
two systems S1 and S2 with their associated state spaces or
cones, effects and transformations, there should be a way to
form a composite system, denoted S1 ⊗ S2. Note that here
we use the symbol ⊗ to denote the construction of a
bipartite system, which need not be related to the vector
space tensor product [15]. There are various operational
constraints on this product ⊗ [10], for example, that if one
can prepare system S1 in state s1 and S2 in state s2 then
there should be a state, denoted s1 ⊗ s2 which represents
independently preparing the two systems in these two
states. Similar statements and constraints can be made for
the effects and transformations of the theory. These opera-
tional constraints, however, do not uniquely specify a way
to form composite systems, as generally composite systems
allow for more than just doing things on each system
independently. Given local state spaces S1 and S2 there are
therefore many different possible composite systems that
could be formed (see, for example, Ref. [10]). An important
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feature of these composites is whether or not the bipartite
state spaces exhibit entanglement, which we now define.
Definition 1 (Entanglement).—A state ψ belonging to

the bipartite state space S1 ⊗ S2 is entangled if and only if
it cannot be written in the following form:

ψ ¼
X

i

pisi ⊗ s0i; pi ≥ 0;
X

i

pi ¼ 1;

where si ∈ ΩS1
, s0i ∈ ΩS2

; i.e., a state is entangled if it
cannot be seen as the convex combination of product states.
In this Letter we will show that entangled states are a

feature of any nonclassical theory which can decohere to
classical theory. We prove this by showing that any theory
without entanglement that decoheres to classical theory
must be classical theory itself. As such, we need a way to
define classical theory and theories without entanglement.
Constraining a theory to have no entanglement is equiv-
alent to fixing a particular choice of tensor product for the
theory, that is, the min-tensor product [10]. Therefore,
rather than defining the general requirements of a tensor
product we will just consider this particular case.
Definition 2 (Min-tensor product ⊠).—The min-tensor

product for combining systems A and B is defined by

KA⊠B ≔ Conv½fa ⊗ bja ∈ KA; b ∈ KBg�

uA⊠B ¼ uA ⊗ uB;

where here ⊗ is the vector space tensor product.
Note that as classical theory exhibits no entanglement,

systems compose under the minimal tensor product,
⊗¼ ⊠. We can now define theories without entanglement
and classical theory.
Definition 3 (Generalized probabilistic theory without

entanglement).—A GPT without entanglement is defined
by a collection of systems fSg, their associated effects ES,
and transformations between them T S→S0 , and, the
composite of systems S and S0 is given by the min-tensor
product, S⊠S0.
Definition 4 (Classical probabilistic theory).—An

N-level classical system, denoted ΔN has a state space
which is an N vertex simplex. These compose under the
min-tensor product and satisfy

ΔN⊠ΔM ¼ ΔNM:

Reversible transformations correspond to permutations of
the vertices of the simplex. Effects are any linear functional
e∶KS → Rþ, e∶ΩS → ½0; 1�.
An interesting feature of classical and quantum theory is

that they obey the no-restriction hypothesis [10,16,17],
which states all mathematically well-defined effects are
allowed in the theory and can be experimentally realized.
We do not make this assumption when considering theories
that can decohere to classical theory. Finally, we must

define and characterize the generalized decoherence-to-
classical map, which we discuss in the following section.
Decoherence.—It is physically well motivated to postu-

late that, in any reasonable theory of nature, be it quantum
or post-quantum, systems must be able to behave classi-
cally. Indeed the GPT framework is fundamentally built on
the assumption that we have a classical interface with the
world. We can choose, potentially using classical random-
ness, which experiment to perform, and we can characterize
states, effects, and transformations in terms of classical
probability distributions that we obtain from experiments.
However, ultimately this classical interface should be
explainable from the theory itself rather than just being
an external structure. This is indeed the case in quantum
theory, where we can view the classical interface as an
effective description of decohered quantum systems. It
therefore seems like any well-founded GPT should have an
analogous decoherence mechanism so as to explain how it
gives rise to the classical interface. We now consider the
key features of quantum to classical decoherence which we
then take to define decoherence for generalized theories.
For each quantum system Q there is a decoherence map

DQ and classical system with state space ΔNðQÞ where the
decoherence map is given by DQ½ρ� ≔

P
N
i¼1hijρjiijiihij.

This map has the following key properties:
Definition 5 (Decoherence maps).—Purely decoherence

maps, in quantum and general theories, obey the following
properties. (1) Physicality: the decoherence map is a
physical map, typically considered to be arising from an
interaction with some environmental system that is then
discarded, and hence must satisfy all of the constraints on
transformations in a GPT. In particular, it must be linear
and map states to states. (2) Idempotence: in quantum
theory the decoherence map destroys the coherences
between the basis states, and so applying it a second time
does nothing to the state. In general, the decoherence map
should restrict the state space to a classical subspace
which is invariant under repeat applications. Therefore,
applying it twice is the same as applying it once and
DS½DS½σ�� ¼ DS½σ� ∀σ ∈ ΩS. (3) Purity decreasing: the
decoherence map arises from losing information to an
environment and as such it cannot increase our knowledge
of the input state. Therefore, D½ρ� cannot be strictly purer
than ρ for any input state ρ. For example, in quantum theory
a decoherence map will not map mixed states to pure states.
In general, a state ρ is strictly purer than state σ if ρ≻σ and
σ⊁ρ. Therefore, if DS½ρ�≻ρ, then ρ≻DS½ρ�, else DS½ρ� is
strictly purer that ρ.
In general, this map could decohere to any subtheory.

However, we are interested, in particular, with decoherence
maps that take systems S to classical systems.
Definition 6 (Decoherence to classical theory).—A

theory decoheres to classical theory if it has a decoherence
map (Definition 5) for each system which obey the
following. (1) State space: the most obvious constraint
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is that image of the decoherence map is a classical state
space:

DSðΩSÞ ¼ ΔNðSÞ:

However, we do not just want to reproduce the states of
classical theory, but the full theory, including its dynamical
and probabilistic structure. (2) Effect space: classical
effects should also arise from the original theory. That
is, that for every effect in classical theory there is some
effect in the full theory that behaves as the classical effect
when we restrict to ΔNðSÞ. This can be formalized as for all
eclassical there exists e ∈ ES such that

eclassical ¼ e∘DS:

(3) (Reversible) transformations: similarly for (reversible)
transformations we expect for any classical (reversible)
transformation t there is a corresponding postclassical
(reversible) transformation with the same action on the
image of DS. This can be formalized as for all classical
reversible transformations Tclassical there exists some revers-
ible T ∈ T S such that

Tclassical ¼ T∘DS:

(4) Composites: finally, we expect decoherence to act
suitably with composition; i.e., if system S1 decoheres
to ΔN via DS1

and system S2 to ΔM via DS2
, then the

composite system S1 ⊗ S2 can decohere to ΔN ⊗ ΔM ¼
ΔNM via DS1

⊗ DS2
.

To give an example, consider quantum theory for qubits,
which decohere to classical theory for bits by applying the
standard dephasing map in (for example) the computational
basis fj0ih0j; j1ih1jg. Measurements in the computational
basis provide the classical measurements, utilising the
quantum effects j0ih0j and j1ih1j. Two qubits can decohere
independently to classical bits, which can then interact and
all permutations of composite bits can be achieved by the
classical CNOT and bit flip operations, which are provided
by the quantum CNOT unitary and the Pauli-X unitary. Also
note that the dephasing map obeys all conditions in
Definition 5.
Results.—We are now in a position to prove our main

result. If a theory can decohere to classical theory and does
not have entanglement, then the original systems must be
composites including a classical system, ΩS ¼ ΔN ⊗ Ωf,
and the decoherence map simply discards any nonclassical
subsystems. More succinctly: theories with nontrivial
decoherence must have entangled states.
The proof of this is provided in the Supplementary

Material along with all necessary mathematical definitions
and background to understand the proof. However, we will
also provide an outline of the proof here. We first show—by
considering the consequences of decoherence for single

systems—that the state space ΩS has the following geo-
metric properties:
Result 1: If DS½ΩS� ¼ ΔN , where DS obeys

Definitions 5 and 6, then the state space ΩS has the
following properties. (1) ΩS is the minimal face of a set
of faces f1; f2;…; fN that are isomorphic fi ≅ fj ∀ i; j,
disjoint (share no states) fi∩fj ¼ ∅ ∀ i; j and are exposed,
(2) each face fi decoheres uniquely to a pure classical state
si, DS½fi� ¼ si.
We then consider the consequences of decoherence on

composite systems. Essentially, as the resulting classical
systems must be able to interact under classical dynamics
we deduce the following additional constraints.
Result 2: If DS½ΩS� ¼ ΔN , where DS obeys

Definitions 5 and 6 and DS½ΩS�⊠DS½ΩS� ¼ ΔN2 which
enjoys the full set of classical dynamics in Definition 4,
then (1) The classical faces are linearly independent,
Span½fi�∩Span½⋃k≠ifk� ¼ f0g ∀ i. (2) ΩS is the convex
hull of these classical faces ΩS ¼ ⋁ifi ¼ Conv½ffig�.
Given these constraints on the state space it is then simple
to show that it is a composite of a classical state space with
a state space isomorphic to these faces, and the decoherence
map simply discards the nonclassical subsystem.
Result 3: For any theory that decoheres to classical

theory as per Definitions 5 and 6, and whose composition
rule ⊗ is given by the minimal tensor product ⊠, all state
spaces are of the form

ΩS ¼ f⊠ΔN

and the decoherence map is of the form

DS ¼ ðs∘uÞf ⊗ 1ΔN
;

where u is the discarding effect and s is some fixed internal
state of f. E.g., decoherence of nonclassical systems
comprises of discarding them.
Therefore, if we restrict ourselves to considering non-

classical theories, the only decoherence-to-classical map
possible is the trivial map, where we discard our non-
classical systems. For example, in quantum theory this
would correspond to all quantum systems regardless of
their state or dimension decohering to the zero-dimensional
classical state, and the resulting classical theory being
trivial.
Discussion.—In this Letter we have shown that if a

theory has a nontrivial decoherence mechanism, such that
decoherence is not simply discarding the system, then the
theory must have entangled states. It therefore seems that
entanglement, rather than being a surprising feature of
nature, is an entirely inevitable feature of any postclassical
theory. A natural question to ask is what other features of
quantum theory can be reproduced simply by demanding
that the theory has a classical limit.
There are myriad other physical features that could be

implied from the existence of a classical limit such as
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information causality [18], bit symmetry [19], and macro-
scopic locality [20] to name but a few. Of particular interest
would be deriving genuine device-independent nonlocality.
The existence of entangled states is in general a necessary
but insufficient condition for observing violations of Bell
inequalities. For example, nonseparable states are present
in the local theory of Spekken’s toy model [21]. On the
other hand, it has been shown that all entangled states in
quantum theory display some hidden nonlocality [22,23].
By determining the additional structure present in quantum
theory that gives this correspondence between entangle-
ment and nonlocality, it could be possible to derive the
violation of Bell inequalities from purely physical postu-
lates. Given the simplicity of the postulates used to derive
the existence of entangled states, it is plausible that the
postulates that give rise to Bell nonlocality are similarly
mundane.
This notion of decoherence has allowed us to define a

new class of GPTs—those with a classical limit. There is
clear physical motivation to consider this class. For
example, if a theory were not to have such a limit then
one would have to posit the existence of two fundamentally
distinct types of systems, the classical systems (which are
how we interact with the world) along with postclassical
systems (which we cannot directly probe). Such a funda-
mental distinction appears unnatural, and so it seems that
decoherence is a necessary feature of any sensible opera-
tional theory. However, while being a physically well-
motivated class, it nonetheless provides a great deal of
mathematical structure and as such gives a more powerful
framework for studying generalized theories.
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