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Quantum Fourier transforms (QFTs) have gained increased attention with the rise of quantum walks,

boson sampling, and quantum metrology. Here, we present and demonstrate a general technique that
simplifies the construction of QFT interferometers using both path and polarization modes. On that basis,
we first observe the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly

exploit number-path entanglement generated in these QFT interferometers and demonstrate optical phase

supersensitivities deterministically.
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Quantum interference lies at the heart of quantum
mechanics. Increasing the number of single photons and
the complexity of optical circuits are key advances for a
quantum advantage in many photonic quantum processing
tasks [1], including quantum computing [2], quantum
simulation [3], and quantum metrology [4].

The Hong-Ou-Mandel (HOM) effect [5] is regarded as one
of the quintessential quantum interference phenomena. In the
original experiment, two identical single photons interfered
and bunched in a two-mode quantum Fourier transform
(QFT) interferometer (i.e., a balanced beam splitter).
Generally, n identical single photons interfering in an
n-mode QFT interferometer [6] will lead to a higher-
dimensional bunching effect [7,8], which is expected to play
an important role in understanding and exploiting multi-
photon interference. A recent application of the QFT is to use
itfor stringent and efficient assessment of boson sampling [9],
which can guarantee the results contain genuine quantum
interference [10]. The QFT interferometer has been con-
structed on chip with up to eight modes [11]. However, only
three-photon assessment was demonstrated [12], due in part
to the relatively high loss of the optical circuit. For this scheme
to work with more photons, it is essential to construct large-
scale and low-loss QFT interferometers.

Quantum metrology is another important application
intimately related to quantum interference. One of the most
versatile quantum metrology devices—the Mach-Zehnder
interferometer (MZI), is made up of two balanced beam
splitters. Naturally, m-mode QFT interferometers were
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proposed to construct multimode MZIs for precision
improvement [13,14] or the simultaneous estimation of
multiple phases [15,16]. Recently, Motes and Olson et al.
[17,18] pointed out that an n-mode MZI fed with a single
photon into each arm can be used to beat the shot noise
limit (SNL) deterministically (see Fig. 1), requiring neither
nonlinear nor probabilistic preparation of entanglement.
However, since multimode MZIs consist of a QFT and an
inverse QFT interferometer, having higher loss and lower
stability than a single QFT interferometer, only one [13]
and two [14] photons have been tested in a three-mode MZI
so far. It remains a challenge to observe multiphoton
interference in multimode MZIs to beat the SNL.
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FIG. 1. Quantum metrology scheme of the QFT interferometers

using single-photon inputs. The QFT acts as the number-path
entanglement generator, while the inverse transform QFT is used
for unentangling the probe. Counting coincidence events with
one photon per output mode leads to the probability distribution
that is used to estimate the unknown phase ¢.
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FIG. 2. Experimental setup. (a) The single photon sources. Photons are produced in three nonlinear crystals (BBO) via spontaneous
parametric down-conversion. Motorized translation stages Ad;—Ad; (not drawn in the figure) were used to synchronize the delays
among paths 1 to 4. The quantum metrology optical circuit with (b) four, (c) two, and (d) three single-photon inputs. The labels are as
follow: DM, dichroic mirror, PBS, polarizing beam splitter, PDBS, polarization-dependent beam splitter, NBS, nonpolarizing beam
splitter, HWP (QWP), half (quarter) wave plate, Prism, used as the phase shifter between different paths, IF, interferential filter, D1, D2,

D3, D4, T1, and T2, fiber-coupled single-photon detectors.

In this work, we develop a general approach to
simplifying the construction of QFT interferometers
using both path and polarization modes, which makes
it possible to reduce resources as much as 75% when
compared to devices using only path modes. We report
the first experimental demonstration of the generalized
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HOM effect with up to four photons. Moreover, we
constructed multimode MZIs using two cascaded QFTs
and observed phase supersensitivies deterministically.
The single-photon inputs were generated via three
spontaneous parametric down-conversion (SPDC) sources
[Fig. 2(a)], each emitting one pair of photons |H),|V);,
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Experimental results of the generalized HOM effect. (a) n = 2, (b) n = 3, (c) n = 4. These bunching output states with photon

number > 2, such as (300) and (210), were measured by multiplexing the single-photon detectors with arrays of beam splitters. Error
bars are 1 standard deviation due to propagated Poissonian statistics.
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where H and V denote horizontal and vertical polarizations,
and s and i correspond to the signal and idler path modes,
respectively. For n = 2, one pair of SPDC photons was
enough, while for n = 3, another SPDC was added, and all
three SPDCs were used for n = 3. For the latter two cases,
postselection of a fourfold (sixfold) coincidence, consisting
of one (two) triggers, ensures that only three (four) photons
enter the setup in separate modes with a negligible higher-
order noise.

The QFT interferometers were constructed with low-loss
bulk-optical elements. In order to decrease the number of
beam splitters and improve the interference stability, we
exploited polarization and path modes simultaneously. This
simplification enables us to construct the QFT interferom-
eters with only one nonpolarizing beam splitter for n = 4
and 2 [Figs. 2(b) and 2(c)], and one polarization-dependent
beam splitter for n = 3 [Fig. 2(d)]. More details can be
found in the Supplemental Material [19].

Generalized HOM effect.—Going through the QFT
interferometers, the single-photon inputs will evolve as,

[11) - (]20) - [02))/v/2, (1)
V2 1
[111) = 57(300) + [030) +]003)) = —=[111), (2)
1111 — g(|4000> — 10400) + |0040) — [0004))
+?(1210> —|2101) + [1012) — [0121))
—%(|2020> — 10202)). (3)

Other terms are destructively interfered to zero according
to the so-called zero-transmission law [7], which predicts
which output configurations will be strictly suppressed in
the generalized HOM effect. The theoretical and exper-
imental probability distributions are shown in Fig. 3. We
use the fidelity defined as F =3, \/p;q; to quantify the
similarity between the experimental probability distribution
{pi} and the theoretical one {g;}, with respect to the three
states in Eqgs. (1)-(3). We obtained fidelities of 0.973 4
0.001, 0.871 4 0.004, and 0.765 4 0.008 for n = 2, 3, and
4, respectively. To distinguish an effect associated with
classical particles, we calculated the experimental violation
of Egs. (1)-(3) as v, = N,;/N,, the ratio of the number of
predicted suppressed events N, to the total number of events
N,.Forn = 2, 3, and 4, the violations with indistinguishable
single photons are v = 0.052 4+ 0.001, v =0.24 +
0.01, Ui{‘d = 0.41 £ 0.03, compared with the larger values
0§ = 0.47 £0.01,0§ = 0.68 £ 0.08,0$ = 0.75 & 0.14 with
distinguishable single photons (coherent states). (See more
details in the Supplemental Material [19].)

The results can also be viewed as a nonclassi-
cality witness of the input sources [8]. We calculated
the average second-order correlation function, defined as

G, = {2/[n(n = 1)]} X2, min;p;j» where n; is the photon
number in the ith mode and p;; is the coincidence
probability between the ith and jth modes. We obtained
G, = 0.052 £ 0.005, G; =0.396+0.007, and G, =
0.556 £ 0.011, significantly violating their corresponding
classical lower bounds (1 —1/n), G, = 0.5, Gz = 0.67,
G, = 0.75, and indicating good average pairwise indis-
tinguishability of the input sources.

Quantum metrology based on the QFT.—Our scheme has
different phase distributions {f;@}"_;, as illustrated in
Fig. 1. To demonstrate the basic principle, we chose two
phase distributions (linear phase f}i" = j — 1 and delta phase
f‘; = 6;,) and implemented two- to four-photon experi-
ments. As shown in Fig. 4, all experimental fringes exhibit
phase superresolution and, most importantly, oscillate with a
better visibility than the corresponding classically limited
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FIG. 4. Measuring counts as function of the phase shift ¢ for
(a)—(c) linear and (d), (e) delta phase distribution. The fringes
exhibit 1, 1.5, and 2 distinct oscillations within a half phase cycle
for (a) n = 2, (b),(d) n = 3 and (c),(e) n = 4, respectively. Error
bars are 1 standard deviation due to propagated Poissonian
statistics. The solid red line is a fit to the case of indistinguishable
single photons, while the dashed line is the limiting distribution
of distinguishable single photons. From (a) to (e), the exper-
imental (classical-limit) visibilities are 0.97 £0.02 (0.50),
0.908 +0.020 (0.609), 0.962 £+ 0.025 (0.790), 0.927 £ 0.037
(0.636), 0.919 £ 0.045 (0.829), respectively. Here, visibility is
defined as (Counts,, — Counts,;,)/(Counts,,, + Counts,),
different from the fitted parameter called effective visibility in
the main text and the Supplemental Material [19].
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TABLE I. Measuring phase sensitivity Ag against the number
of photons n. Here, HL denotes the Heisenberg limit.

Photon number (n)  A@jgeal Aexp SNL HL
2 0.500 0.5154+0.013 0.707 0.500
3 0.433 0491 +0.015 0.577 0.333
4 0.408 0.458 £0.027 0.500 0.250

distributions, which are given in the Supplemental Material
[19]. Different from other schemes based on engineered
entangled states, e.g., the NOON state [29], the QFT-based
quantum metrology scheme directly exploits deterministi-
cally generated entanglement [Eqgs. (1)—(3)]. Thus, we do not
need to worry about postselection efficiency when trying to
demonstrate phase supersensitivity [30].

The linear phase scheme has a phase sensitivity that
scales as O(1/n*?) [17]. Unfortunately, the high sensi-
tivity is due to the linearly increasing phase shift
{(j = )@}, but not the quantum nature of multiphoton
interference [31]. Nevertheless, the linear scheme is super-
resolving and could have applications to quantum micros-
copy [32]. Note that the largest relative phase shift is
(n = 1)@ ~ ne. If we run a classical two-mode MZI n times
to measure the largest relative phase shift ne, its classical
sensitivity is A(ng) = O(1/n'/?), which means A(p) =
O(1/n3/?), giving the same improvement as the linear
phase scheme. In fact, it has been pointed out that Kitaev’s
phase-estimation algorithm, based on the QFT with a
similar linearly increasing phase shift, cannot beat the
SNL unless one uses adaptive measurements [33].

The delta function proved to be the best phase distribu-
tion to demonstrate phase supersensitivity, although Ag
only scales as y/{n/[8(n—1)]} [18]. As the number of
photons increases, the phase sensitivity approaches a
constant. As a result, the superresolution disappears and
the output fringes approach the SNL distribution quickly.
Only in the low-photon-number regime (n <6) is it
possible to beat the SNL. In the experiment, the effective
visibilities of the measured fringes are 0.94 £ 0.02 and
0.97 + 0.03 for n = 3 and 4, respectively. They are greater
than the corresponding thresholds (0.83 and 0.93) to beat
the SNL. As shown in Table I, all the measuring phase
sensitivities beat the SNLs. More details can be found in the
Supplemental Material [19].

In conclusion, we have experimentally demonstrated
the generalized HOM effect in QFT interferometers and
observed phase supersensitivies in the multimode MZIs with
two, three, and four photons. Our simple QFT devices may be
used to realize other QFT-based applications, such as
quantum-enhanced multiphase estimation [15,16], entangle-
ment generation and transformation [34], sorting quantum
systems efficiently [35], nonmonotonic quantum-to-classical
transitions [36], and simulations of a geometric phase [37].

Additionally, the scheme using both path and polarization
modes is also suited to optical waveguide systems for
simplifying the construction of QFT interferometers.
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