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Transient molecular networks, a class of adaptive soft materials with remarkable application potential,
display complex, and intriguing dynamic behavior. By performing dynamic light scattering on a wide
angular range, we study the relaxation dynamics of a reversible network formed by DNA tetravalent
nanoparticles, finding a slow relaxation mode that is wave vector independent at large q and crosses over to
a standard q−2 viscoelastic relaxation at low q. Exploiting the controlled properties of our DNA network,
we attribute this mode to fluctuations in local elasticity induced by connectivity rearrangement. We propose
a simple beads and springs model that captures the basic features of this q0 behavior.
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Introduction.—Transient molecular networks are systems
in which colloidal particles, molecular aggregates, or poly-
mers reversibly bind into percolating tridimensional matrices
capable of sustaining stress.Reversible bonds canbeprovided
by soft molecular interactions (hydrophobic, electrostatic, H
bonds) or by conformational constraints, as in the case of
entangled polymer solutions [1]. Despite the diversity of the
systems in this class, transientmolecular networks share basic
mechanical properties that make them relevant as adaptive,
reversible, self-healing materials, applications for which they
are currently under intense scrutiny [2,3].
Transientmolecular networks also share complex dynamic

behavior, generally dominated by two main distinct and
coexisting processes, as observed either in the relaxation after
mechanical, electrical, or optical stimuli [4–6] or by studying
spontaneous fluctuations. The study of concentration fluc-
tuationhas enableddetermining, in someof these systems, the
characteristic time of the two processes as a function of the
wave vector q [7–15]. The faster mode τF is generally found
to scale as τF ∝ q−2, as typical of collective diffusion. During
this process, concentration inhomogeneities relax only par-
tially. Full decorrelation is achieved only after a longer time
τS. Intriguingly, such slower relaxation displays different
features in different systems and in different regimes of the
same system. Some studies on microemulsions [7], semi-
dilute solutions of polymer [8–10], or block copolymers [11]
report that the slower process scales as τS ∝ q−2, which is
attributed to topological rearrangement, viscoelastic decay or
cluster formation, respectively.Another group of experiments
in rodlike micelles [12], semidilute polymers with bonding
agents [8,9,13], telechelic ionomers [14] reported instead
a q-independent slow mode. In a few cases the slower
mode appears to change from q−2 to “q0” by increasing
the polymer concentration [8,9,15]. What the microscopic
mechanism behind such a q0 mode is and which phenomena

control the range of conditions where it is found, still need a
convincing explanation.
Transient networks are typically composed by rather

complex units which allow neither a precise knowledge
of the node structure and size nor a control of the internode
bond lifetime. Those elements appear instead to be the
ingredients essential to unveil the molecular processes
implied in such unconventional dynamics. We present here
a study of the collective dynamics of a DNA-based transient
network of which we design particles, connectivity, bond
strength, and bond lifetime. The network connectivity is
produced by the reversible binding of DNA multistrand
constructs shaped as four-arms nanostars (NS) with sticky
tips, a realization of low-valence colloids [16,17] (see the
SupplementalMaterial [18]).When sufficiently concentrated,
NS dispersions undergo a continuous reversible transforma-
tion from a fluid of independent particles to a gel in a small
temperature (T) range by passing through a continuum of
equilibrium states [19]. Thus, this system enables exploring
the dynamics of a transient network in a huge range of
network strengths andbond lifetimes,which is something that
cannot be easily done in the other transient molecular net-
works. By performing light scattering in awide range ofwave
vectors that extends those of traditional approaches to values
obtained by small angle detection, we could observe the
crossover of the q0 mode to q−2 and its T dependence. The
specificity of this system enables us to clearly differentiate the
role of thenetwork in thedynamical processes andunderstand
the slower mode as a product of the topological rearrange-
ments bringing about fluctuation in the local bulk modulus.
Accordingly, we propose here a zeroth order model based on
elasticity fluctuations, which enables us to explain all the
basic features of the q0 mode.
Methods.—A solution of DNA NS at concentration

c ¼ 21.3 mg=ml (355 μM) and ionic strength of 50 mM
NaCl was investigated by means of dynamic light
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scattering (DLS) in the range 30 μm−1 < q < 0.2 μm−1,
corresponding to length scales ranging from hundreds to
tens of thousands times the mean NS distance. In this
interval we determined the intermediate scattering function
fðq; tÞ defined as

g2ðq; tÞ ¼ hIðq; t0ÞIðq; t0 þ tÞit0=hIðqÞi2t0 ¼ 1þ b½fðq; tÞ�2;
ð1Þ

where g2ðq; tÞ is the time correlation function for the
scattered intensity Iðq; tÞ at a scattering vector q and lag
time t. b is the Siegert coefficient, which depends on the
experimental setup. Averages are performed over time.
To access a q range functional to a clear experimental

description of the dynamics of this system, we realized a
custom setup that combines three distinct detection schemes
corresponding to three different wave vector q ranges: Large
q “Lq” (4 μm−1 > q > 30 μm−1), Intermediate q “Iq”
(0.8 μm−1 < q < 4 μm−1), and small q “Sq” (0.2 μm−1 <
q < 0.5 μm−1) (see the Supplemental Material [18]).
Measurements were performed after at least 3 h of

thermalization (see the Supplemental Material [18]) at
three temperatures: T ¼ 35 °C, T ¼ 27 °C, and T ¼ 15 °C.

Results and discussion.—Figures 1(a)–1(c) show fðq; tÞ2
measured at T ¼ 27 °C in the Sq, Iq, and Lq ranges,
respectively. A double decay is clearly detectable in the Sq
andLq ranges. In the Iq data only the slower process is visible
because of the technical limitation on the shortest lag times
(see the Supplemental Material [18]). The correlations in the
figures are normalized to their amplitude at t ¼ 0 (in Lq and
Sq) or to the amplitude of the slow mode only (in Iq).
Correlation curves in Figs. 1(a)–1(c) can be analyzed to

determine the q dependence of the characteristic time of
both the fast (τF) and slow (τS) components (see the
Supplemental Material [18]). The slow relaxation can be
well fitted by a stretched exponential function fðq; tÞ ¼
hðqÞ exp½−ðt=τsÞ0.8� as it can be appreciated in the figures
where the best fitting curves are plotted as dashed lines.
The value of τS at 27 °C thus determined are plotted in
Fig. 1(g) (full symbols) where the shading marks the three
regimes. At large enough q, τS is nearly q independent
for about a decade in q, limited by the largest accessible q.
As q decreases below 3 μm−1, τS becomes q dependent
and adopts a τS ¼ ASq−2 scaling, with coefficient AS ≈;
1012 s=m2. hðqÞ, the amplitude of the slow mode relative to
the whole relaxation, grows from h ≈ 0.5 to h ≈ 0.9 upon
lowering q (see Fig. 2 in the Supplemental Material [18]).

(a)

(d) (e) (f)

(b) (c)

(g)

FIG. 1. Squared intermediate scattering
function fðq; tÞ2 measured at T ¼ 27 °C
(continuous colored lines) in the small q
(pink shading), intermediate q (gray shad-
ing), and large q (blue shading) intervals,
normalized either to τ ¼ 0 (a),(c) or to the
amplitude of the slow decay (b). Distinct
colors indicate different q, with q increasing
as indicated by the arrows. Dashed lines:
stretched exponential fits to the slower
component of the correlations [(a)–(c)];
exponential fits to the faster component of
the decay in the small q (d) and large q [(f)
and inset] ranges. Orange and green marks
in pane (b) indicate two subsets of correla-
tions, the latter plotted in pane (e) vs τq2.
Characteristic times for the fast (full sym-
bols) and slow modes (open symbols) and
q−2 lines are plot in pane (g).
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An analogous crossover from q0 at larger q, to q−2 at
smaller q, is observed for the two other T considered in this
study. The values of τSðq; TÞ for the three temperatures are
plotted in Fig. 2 (full symbols). In the “q0 regime” where τS
appears to be q independent, τS can be approximated by a
power law dependence τS ∼ q−α with 0 < α < 0.3. In
this regime, τS grows with decreasing T as an Arrhenius
law, τS ¼ τS0 expðΔH=kBTÞ with an activation energy
ΔH≈; 120� 5 kcal=mol approximately matching the
enthalpy required to open three bonds between NSs [19]
(see the Supplemental Material [18]). τS is therefore propor-
tional to the lifetime of inter-NS bond. At the opposite limit
of small q, we find that the coefficient AS has a very weak
dependence on T, if any. The wave vector at which the
crossover to the q−2 occurs is thus strongly T dependent, as
visible in Fig. 2, with qc ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τS0=AS

p

expðΔH=2kBTÞ. The
crossover can be directly appreciated in the Iq range at
T ¼ 27 °C in Fig. 1(b) where the subset of fðq; tÞ2 in the
upper range of the Iq interval (orange mark) overlap,
indicating equal τS, while at lower q (green mark) they
are spread, indicating a q-dependent τS. When plotted vs tq2

only this last group of correlations collapses [Fig. 1(e)].
Since τS in the q0 range marks the inter-NS bond

lifetimes, the kinetic behavior observed at shorter times
must not involve the disruption of bonds but rather reflect
concentration fluctuations occurring at fixed network top-
ology. Such a process is reminiscent of the caging effect in
concentrated colloids, although in this case the diffusional
freedom is not set by the size of the cage but by the
flexibility of the network. The characteristic time of these
fluctuations at frozen topology can be determined from the
initial slope of fðq; tÞ. This analysis is shown in Figs. 1(d)
and 1(f) for the Sq and Lq ranges, in which the faster decay

is clearly detected. Dashed lines are exponential functions
fðq; tÞ ¼ expð−t=τFÞ fitting the initial decay of fðq; tÞ.
The characteristic times obtained in this way are plotted for
T ¼ 27 °C in Fig. 1(g) as open symbols. As clearly visible,
τF determined in the Lq and Sq grow proportionally to q−2
and lay on the same line τF ¼ AFq−2 with AF ≈ 1010 s=m2

(dotted line). The same diffusive behavior is found at
T ¼ 35 °C, with similar AF coefficient (dotted line in Fig. 2).
Two distinct kinetic regimes can thus be identified. In the

small q region (q < qc) the DNA NS dynamics is formed
by two coexisting mechanisms with q−2 relaxation. When
q > qc, in a range where lengths are still much larger than
the single NS, we find a distinct regime in which the
relaxation is enabled by topological rearrangements of the
DNA NS network. The challenge in interpreting this
“topological regime” is to understand how local unbinding
and binding of DNA NS affect in the same way—same
kinetics—the onset and dissipation of concentration fluc-
tuation that differ in size more than an order of magnitude.
Following each process of disruption and formation of

bonds, the connectivity of the network locally changes. The
well-studied case of the random-network structure of vitreous
silica clarified that such tetrahedrally coordinated systems
can form a large variety of topological patterns with quite
different loop length distributions [20,21], yielding a signifi-
cantly inhomogenous elastic response [22]. In the case of
DNANS, a system having a larger bond flexibility than silica
[23] and with a (T dependent) fraction of unbound terminals,
the accessible topologies cannot but be even more diverse.
Thus, as NS tips unbind and rebind to available nearby open
ends (a process requiring a minimal particle displacement),
local connectivity is modified. Bulkmodulus of gels crucially
depends on the local connectivity and loop length [4], an old
notion that recently found experimental confirmation [24].
Therefore, the transient DNA NS hydrogel is effectively a
medium with a locally fluctuating elastic modulus, as
sketched in Fig. 3(a), in which the local tightening or
loosening of the network brings about a contraction or
expansion that propagates in the system through aviscoelastic
relaxation. Differently from particle diffusion phenomena,
in which mass conservation implicitly implies τ ∝ q−2, the
process of elastic contraction or expansion couples to the
concentration fluctuations via the change of the local volume.
It is precisely the absence of a particle conservation law
on a local scale that opens up the possibility of observing
q-independent relaxation phenomena.
Such interplay between elasticity fluctuations and vis-

coelastic relaxation can be better understood by consider-
ing a simple 1D chain of beads and springs in which the
spring constants kn, mimicking the local elastic modulus,
are allowed to fluctuate. Each choice of the set of elastic
constants fkng corresponds then to a given degree of
frozen-in spatial disorder, which can be relaxed by recon-
figuring the value of the elastic springs. For simplicity,
we assume that each elastic constant kn fluctuates only
between two equiprobable values K1 and K2 with an

FIG. 2. Relaxation times of the fast mode (τF, empty symbols)
and of the slow mode (τS, full symbols) at various T as a function
of q. Sketches on the right-hand side (where DNA NS are pictured
as gray three-arms stars) are aimed to mimic the gel’s aggregation
state at the temperatures here considered, where p is the fraction of
bound terminals (solid dots: bound terminals, open dots: unbound
terminals). At the three T, the bond lifetimes are also different,
ranging from short-lived (red dots) to long-lived (green dots).
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average refresh rate Γ. The beads density-density correla-
tion function can be computed by their coordinates frng
(see the Supplemental Material [18]).
We describe the model predictions in steps. We start by

assuming that after each change in fkng the system instantly
evolves to the new equilibrium frng. An example of the
motionsof a setof selectedbeadswithin the1Darray following
spring refresh and fast equilibration is given in the drawing in
Fig.3(b).ThecorrespondingFðq; tÞ, showninFig.3(c), canbe
well described by exponential decays. It is evident from the
collapse of the correlations and from the q dependence of

their decay times (in the inset), that this mechanism provides
an identical relaxation at all q. The characteristic time is in all
cases equal to Γ−1, which marks the time requested to
completely regenerate an uncorrelated sequence of spring
constants. Indeed, this simple exercise clearly shows that
spatially uncorrelated elasticity fluctuation uncoupled to par-
ticle transport gives rise to a length-scale independent decay
of the concentration fluctuations over all lengths.
We then considered the same model in the presence of a

thermal bath, inducing viscous damping and a random
force acting on each bead. The corresponding equation of
motion in the overdamped limit, appropriate to the dynam-
ics of an aqueous gel, is now

−knðrn−rn−1− l0Þþknþ1ðrnþ1−rn− l0Þ−γ _rnþfn¼0;

ð2Þ

where γ is the viscous damping on the beads and fn the
delta-correlated random force acting on bead n, whose
amplitude is fixed by the dissipation-fluctuation theorem.
Solutions of Eq. (2) when all kn are equal (kn ¼ K) and
fixed to their initial value shows that the density fluctua-
tions relax to a nonergodicity plateau with a viscoelastic
time τE ¼ ðγ=KÞðql0Þ−2, e.g., a time which grows with q−2
as in the case of the phonon dispersion relation in colloidal
crystals [25,26].
We finally move to the relevant case in which the fkng

fluctuate between K1 and K2. Now at each integration
time step dt the value of all fkng is reassigned with
probability Γdt. The decay of the numerically evaluated
Fðq; tÞ [Fig. 3(d)] features two distinct relaxation processes
that merge as q decreases. At larger q, the two modes have a
clearly distinct dependence on q [Fig. 3(e)]. The slower (τ1)
is q independent, and τ1 ≈ Γ−1. The faster (τ2) is instead q
dependent, with value and slope approximately matching
those of τE, where K ¼ ðK1 þ K2Þ=2 is now the average
elastic constant. Figure 3(e) shows that as τE approaches
Γ−1, the slower relaxation time exhibits a crossover from a
q0 regime at larger q to a q−2 regime at the limit of small q.
This behavior confirms the notion introduced above: when
the reconfiguration of the network takes place on time scales
faster than the damped elastic propagation, the system
relaxation is length-scale independent. When instead the
viscoelastic propagation of the elastic changes is slower
than the network reconfiguration, the dominant time is the
viscoelastic behavior with the expected diffusive q−2-
dependent dynamics. This simple model offers a micro-
scopic understanding of the de Gennes’ “two fluid model”
[1,10,27], which was proposed to account for the complex
kinetics of a polymeric network by introducing an effective
Maxwell-type frequency-dependent viscoelastic response of
the network MðωÞ, which, however, had no reference to
molecular processes. Indeed, it is possible to show that our
model yields a viscoelastic response analogous to MðωÞ.
As a further check of the appropriateness of the fluctuating

elasticity model for our system, it is also possible to compute

(a)

(c)(b)

(d) (e)

FIG. 3. Elasticity fluctuation model. (a) Networks of DNA NS
can adopt various topological patterns, characterized by different
loop lengths, resulting in different local bulk moduli, as described
pictorially in the sketches. Topological relaxation occurring upon
binding and unbinding of NS effectively provide fluctuations in the
local elasticity, described in the 1D beads and spring model as a
switching between elastic constantsK1 andK2. (b) and (c)Elasticity
fluctuationmodel for instantaneous relaxation of the bead positions.
(b) Sequence of equilibriumconfiguration of 7 beads at the center of
a string of 500 beads and springs.Time expressed in units ofΓ−1, the
average spring refresh time. (c) Bead density correlation function
fðq; TÞ (different colors indicate differentq) and their characteristic
times vsq (expressed in units of 1=l0, themean interbead distance).
(d)fðq; TÞ as in pane (c) calculated in the presence of thermal noise.
(e) q dependence of the two characteristic times τ1 (black dots) and
τ2 (red dots). Black line: Γτ ¼ 1. Red line: viscoelastic relaxation
time τE multiplied by Γ.
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a rough estimate of τE for the NP network (see the
Supplemental Material [18]). We obtain that the expected
τE should be τE > 0.02q−2½s�. This estimate is in the same
order of magnitude of the experimental observation and it is
reasonably compatible with both observed q−2 modes. Such
ambiguity cannot be further disentangled by the beads and
spring model, which explains the q0 mode and its crossover
to a diffusion process, but cannot reproduce the entire
experimental findings. Indeed, in the limit of small q the
model predicts only one detectable relaxation process. This
is expected since we have included neither thermal diffusion
nor the small but not negligible free particle diffusion, which
are crucial for establishing the correct long wavelengths
limits. Memory function or appropriate conservation laws
(in the manner of Navier and Stokes) could provide more
accurate (but perhaps less transparent) descriptions.
Conclusions.—We have studied the anomalous length-

scale-independent relaxation of a DNA-based transient
network. The strong T dependence of the lifetime of the
interparticle bonds makes it possible to experimentally
access the crossover between the diffusive (q−2) and q-
independent (q0) modes. By leveraging on the detailed
knowledge of the system, we pinpoint the origin of the q0

mode in the local topological reconfiguration of the net-
work and the resulting fluctuation of the network’s local
bulk modulus. The notion of independent elastically
relaxing local units introduces a mechanism of concen-
tration fluctuation which does not require overall mass
transport, a crucial requirement to preempt the application
of the particle conservation law and to give rise to a q0

mode. This notion also naturally introduces a crossover
between the time scale of local elasticity fluctuations and
the time scale of viscoelastic propagation, which becomes
the dominant decorrelation mechanism at large length
scales. This behavior is captured and explained by a
simple 1D model based of beads and springs with fluctu-
ating elastic constants. The model, however, does not
reproduce the presence of the two distinct diffusive modes
which we observe at low q. Further theoretical modeling is
thus required to explain the origin of an additional mode
and its possible interactions with the fluctuating elas-
tic mode.
Our findings reveal the intimate connection between the

reversibility of the bonds and the q0 mode, which thus
emerges as a universal property of the dynamics of transient
networks. Even more generally, the q0 behavior could be a
feature typical of all systems having a slow dynamics
caused by independently relaxing distinct regions, with its
expected range at wavelengths larger than the characteristic
size of the relaxing units.
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