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We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end
termination (synthesizable from molecular precursors with atomic precision) belong to different electronic
topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the
terminating unit cell. We have derived explicit formulas for their topological invariants and shown that
localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction
geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron
atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin
centers, forming a Heisenberg antiferromagnetic spin 1=2 chain with tunable exchange interaction. The
discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open
a new path for design principles of future GNR-based devices through their topological characters.
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Knowledge of the topology of the electronic ground state
ofmaterials has led to deep insights to novel phenomena such
as the integer quantum Hall effect [1,2] and fermion-number
fractionalization [3–5], as well as other properties of matter
[6–10]. Joining two insulators of different topological classes
produces fascinating localized boundary states in the band
gap [8–10]. Another exciting recent development is the
bottom-up synthesis (from molecular precursors) of gra-
phene nanoribbons (GNRs) with atomic precision control of
their edge and width [11–13]. GNRs are quasi-1D systems
with tunable electronic properties that hold great promise for
nanoelectronics and other technologies [14–18]. For exam-
ple, nanometer-size heterojunctions can be realized by fusing
two different semiconducting GNRs together [17,18]. In this
work, we connect the two fields and derive the relationship
between the atomic structure and band topology of GNR
systems.
In mathematics, the topology of a compact object is

characterized by global invariants that may be obtained
through the integral of local quantities. In a quasi-one-
dimensional (1D) crystal, the electronic bands are defined
in the 1D Brillouin zone (BZ). The 1D BZ has the shape of
a circle and is therefore a closed compact manifold which
may host topological quantities. Since GNRs are nanome-
ter-wide ribbons of graphene with the dangling σ bonds of
the edge carbon atoms passivated, they can have different
structures and hence different electronic states. Common
GNRs synthesized using bottom-up precursor molecule
techniques are of the forms of an armchair-edge graphene
ribbon (AGNR) with N rows of carbon atoms forming the
ribbon width (Table I), but many other forms of GNRs have
also been synthesized [11,12,19]. As shown below, the

topological phases of the insulating GNRs are characterized
by an integer 0 or 1 (mod 2), called a Z2 invariant [10].
To characterize the topology of the nth band of a quasi-

1D crystal, the relevant quantity is the Zak phase, obtained
by an integral of the Berry connection, ihunkjð∂unk=∂kÞi,
across the 1D BZ [20]:

γn ¼ i

�
2π

d

� Zπ=d

−π=d
dk

�
unk

���� ∂unk∂k
�
; ð1Þ

where k is the wave vector, d is the unit cell size, and unk is
the periodic part of the electron Bloch wave function in
band n. The Zak phase may be written in two parts: an
intercell part (which is independent of the coordinate
origin) and an intracell part [21]. In general, the Zak phase
depends on the shape of the unit cell and could take on any
value. However, if the system has spatial symmetries such
as inversion and/or mirror, the intercell Zak phase of a band
is quantized at 0 or π (mod 2π) [20], corresponding to a
topological trivial or nontrivial band, respectively.
Furthermore, when the origin of the unit cell coincides
with the inversion or mirror center, only the intercell Zak
phase contributes to the total Zak phase. The intercell Zak
phase thus is the appropriate quantity to characterize the
symmetry-protected topological (SPT) phases in 1D, and it
dictates the bulk-boundary correspondence which states
that protected localized states would emerge at the boun-
dary between two topologically distinct regions [21]. A
salient example which demonstrates this bulk-boundary
correspondence is the Su-Schrieffer-Heeger model [4,5],
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where the domain boundaries in polyacetylene chains host
localized interface states with energy at midgap.
In 1D, the SPT phase of a band insulator is determined

by the sum of the intercell Zak phases of all the occupied
bands. To simplify the discussions and calculations, we use
a Z2 invariant [10], instead of the Zak phase, to characterize
the topology of GNRs. The Z2 invariant and the total
intercell Zak phase for GNR systems are related through

ð−1ÞZ2 ¼ ei
P

n
γn ; ð2Þ

where the sum is over the occupied bands. Z2 ¼ 1 indicates
a nontrivial topological insulator, whereas Z2 ¼ 0 indicates
a trivial insulator. The Z2 invariant may be calculated from
the wave function parities at the center and end k point of
the BZ. Explicit formulas for Z2 for the AGNRs are
given below.
Though graphene is gapless, GNRs of most edge shapes

are semiconductors [14]. Moreover, GNRs with spatial
symmetry in general should support SPT phases. We focus
mostly on the AGNRs here, since they are the most
commonly bottom-up synthesized form of the GNRs. We
classify and categorize the SPT phases of the AGNRs
according to their Z2 invariant. The Z2 invariant of an
AGNR depends on the shape of its termination (which
dictates the unit cell shape in the bulk) and the width of
the ribbon. In Table I, we summarize our results for various
ribbonwidths and for end terminations that cut perpendicular
through the length of AGNRs. In the case that carbon atoms
form an odd number of rows (N ¼ odd) across the width of
the AGNR, the zigzag and zigzag′ terminations yield

Z2 ¼
1þ ð−1Þ⌊N=3⌋þ⌊ðNþ1Þ=2⌋

2
ð3Þ

and

Z2 ¼
1 − ð−1Þ⌊N=3⌋þ⌊ðNþ1Þ=2⌋

2
; ð4Þ

respectively. The floor function ⌊x⌋ takes the largest integer
less than or equal to a real number x. In the case that
N ¼ even, the zigzag and bearded terminations yield

Z2 ¼
1 − ð−1Þ⌊N=3⌋þ⌊ðNþ1Þ=2⌋

2
ð5Þ

and

Z2 ¼
1 − ð−1Þ⌊N=3⌋

2
; ð6Þ

respectively. The differentwidths and end terminationsdictate
different bulk unit cells with corresponding spatial sym-
metries. For N ¼ odd AGNRs, both the zigzag and zigzag′
terminations have inversion and mirror symmetry, while for
N ¼ even AGNRs, the zigzag and bearded terminations have
only one type of symmetry, mirror and inversion symmetry,
respectively. Other types of terminations, e.g., ones that cut
nonperpendicular to the AGNR axis [18], should also support
SPTphases, as longas its bulkunit cell has spatial symmetries.
The derivation of the above formulas is given in Supplemental
Material, Sec. I [22], and has been validated through explicit
density functional theory (DFT) supercell calculations [23,24]
onAGNRswith 3 ≤ N ≤ 10.We emphasize here an essential
feature for quasi-1D systems with multiple atoms along the
lateral direction—each distinct termination implies a unique
bulk unit cell that dictates its Z2 invariant.
A topological classification of the GNRs (e.g., the one

given in Table I for the AGNRs) provides a useful,
systematic way to understand and design the electronic
and transport properties of GNR junctions. Since the

TABLE I. Categorization of electronic topology of AGNRs. The nanoribbons are identified according to the type of termination
(labeled in the first row) and width. Schematics of AGNR structure with different termination types is defined and plotted in the second
row. The bracket denotes a specific termination of an infinitely long AGNR. The row number for the carbon atoms along the lateral
direction are labeled from “1” to “N”. The bulk unit cell of each structure that is commensurate with the termination is indicated by the
dashed red rectangle. The bulk symmetry is indicated in the third row. The value of the Z2 invariant is given in the fourth row. The floor
function ⌊x⌋ takes the largest integer less than or equal to a real number x.
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topology of the ground state of a GNR segment depends on
the shape of its termination, the electronic structure at a
junction can vary, depending on how the two segments are
joined laterally (without making any other changes). We
demonstrate this novel effect by constructingGNR junctions
with two AGNRs of different widths. Figure 1 shows two
possible types of junctions formed by anN ¼ 7 and anN ¼
9 AGNR. For the nonsymmetric junction [Fig. 1(a)], both
theN ¼ 7 andN ¼ 9 segments haveZ2 ¼ 1 (Table I). From
the bulk-boundary correspondence, zero or an even number
of localized junction states is expected in the band gap. For
the symmetric junction [Fig. 1(b)], though the N ¼ 7 and
N ¼ 9AGNRs only shift laterally with each other, the Z2 of
the N ¼ 7 segment changes from 1 to 0 owing to a different
termination (Table I), while the Z2 of the N ¼ 9 segment
remains unchanged. As a result, one or an odd number of
localized junction states should emerge in the band gap. We
verified these rather counterintuitive results by performing
explicit DFT calculations on these two types of junctions.
Our DFT calculations show that no junction state exists at
the nonsymmetric junction, whereas one localized junction
state with midgap energy appears at the symmetric junction
even though the structure is now more symmetrical. The
calculated charge density distribution of the junction state is
shown in Fig. 1(b). For both the nonsymmetric and the
symmetric junctions, only the carbon π orbitals are involved
with the formation of states near or in the band gap, and the
number of carbon atoms is exactly the same. Additional
examples of different types of GNR junctions and the
presence or absence of junction states are included in
Supplemental Material, Sec. II [22], for comparison.
We now demonstrate that not only do SPT phases exist in

pristine GNRs and account for the topological junction

states, but these SPT phases may be modified with periodic
doping. The physics for this phenomenon is that, upon
doping, a GNR may acquire a different Zak phase from the
dopant bands and can therefore change its topological class.
These periodically doped GNRs have also been successfully
synthesized recently with bottom-up molecular precursor
techniques [25].
Figure 2(a) shows the experimentally synthesized struc-

ture of a substitutionally doped N ¼ 7 AGNR by boron
pairs (B2-7AGNR). Because of the change in ground-state
topology, as we shall show, contrary to 7AGNR, there is no
midgap end state at the vacuum/B2-7AGNR interface for
the neutral system, but there is a midgap junction state at
the 7AGNR/B2-7AGNR interface. Figure 2(b) depicts the
quasiparticle band structure of B2-7AGNR calculated
using the ab initio GW approach with the BerkeleyGW
package [26,27]. The lowest conduction (at ∼2 eV) and the
highest valence (at ∼0 eV) band of the doped system have
wave functions derived from the dopant orbitals of an
isolated boron pair in 7AGNR and are therefore named as
the upper and lower dopant bands, respectively. The
calculated quasiparticle band gap, 2.0 eV from the ab initio
GW energies, is significantly larger than the Kohn-Sham
band gap (0.6 eV) from the DFT within the local density
approximation, although the basic character of the wave
functions does not change. This large change in the band
gap between the two methods reflects the strong many-
electron effects in the band energy of a quasi-1D material;
the GW approach more accurately computes the electron
self-energy than the DFT [26,28]. The calculated Zak
phases of the lower and upper dopant bands in Fig. 2(b)
are −π and π, respectively. As the B2-7AGNR has two less
electrons per unit cell than pristine AGNR, the total Zak
phase of B2-7AGNR must differ from that of a pristine
7AGNR by π, owing to the emptying out of the upper
dopant band and that the Hamiltonian of the doped system
may be obtained adiabatically from the pristine system
without closing the band gap. We verified this reasoning
with an explicit calculation of the Z2 invariant for B2-
7AGNR. Therefore, substitutionally periodic doping by
boron pairs changes the topological class of 7AGNR.
The topological nontrivial nature of the individual dopant

bands arises from a band inversion between the upper and
lower dopant bands as one goes from theBZ center to the BZ
edge. Our calculations show that the lower and upper dopant
bands are mainly composed of two dopant-derived orbitals
(extending over several atoms) that have s- and p-like
symmetries [Fig. 2(c)]. (The two dopant orbitals in the dilute
limit are almost degenerate in energy and spatially centered
around the boron dopant pairs.)When thewavevector kgoes
from the center to the edge of the BZ, the upper dopant band
gradually changes its orbital character from s-like to p-like
(vice versa for the lower dopant band), while it remains
nearly flat with a bandwidth of ∼0.1 eV (details in
Supplemental Material, Sec. III [22]).
A superlattice formed with alternate segments of doped

(B2-7AGNR) and pristine 7AGNR ribbons hosts a periodic

FIG. 1. Heterojunctions formed with N ¼ 9 and N ¼ 7 arm-
chair graphene nanoribbons (9AGNR/7AGNR) between two (a)
topologically equivalent segments and (b) topologically inequi-
valent segments. The red dashed line denotes the interface
between the two nanoribbons. The carbon-carbon and carbon-
hydrogen bonds are colored black and gray, respectively. The
color scale shows the charge density of the localized midgap
junction state. The charge density is integrated along the out-of-
plane direction [in units of 1=ða:u:Þ2].

PRL 119, 076401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

18 AUGUST 2017

076401-3



array of junction states, with one electron occupying each
localized junction state for the neutral system [Fig. 3(a)].
The midgap junction state in this system has a large
calculated onsite Coulomb U of nearly 500 meV within
the local spin density approximation (LSDA) and therefore
is a localized spin center at each junction.
The interactions between these spin centers give

rise to a 1D Heisenberg-type antiferromagnetic (AFM)

spin 1=2 chain [Fig. 3(b)]. The effective exchange
interactions between the spin centers are mediated both
through the boron-doped segment and the pristine seg-
ment. The spin-dependent part of the Hamiltonian may be
cast as

H ¼ Σi½JBðdBÞS1i · S2i þ JPðdPÞS2i · S1iþ1�: ð7Þ

FIG. 2. Boron-doped graphene nanoribbons. (a) Structure of an N ¼ 7 AGNR periodically doped with boron pairs (B2-7AGNR). The
carbon-carbon, carbon-boron, and carbon-hydrogen bonds are colored black, red, and gray, respectively. The dashed black rectangle
indicates a unit cell. (b) Band structure of the B2-7AGNR calculated with the ab initio GW method. The top of the valence band is set at
0 eV. (c) Wave function of dopant orbitals with s and p symmetries, plotted at 1 Å above the nanoribbon plane. The red and blue color
shows positive and negative amplitudes [in units of 1=ða:u:Þ3=2], respectively.

FIG. 3. Doped-pristine AGNR superlattice. (a) Structure of a 7AGNR/B2-7AGNR superlattice. The carbon-carbon, carbon-boron, and
carbon-hydrogen bonds are colored black, red, and gray, respectively. The color scale shows the charge density distribution of the lower
junction-state band integrated over states in the superlattice Brillouin zone and integrated over the direction perpendicular to the ribbon
plane [in units of 1=ða:u:Þ2]. (b) Schematics of the 1D antiferromagnetic Heisenberg spin 1=2 chain corresponding to the system shown
in (a). The arrows denote relative directions of electron spins. (c) Ab initio calculated exchange parameters in the Heisenberg model as a
function of the separation distance, in log scale and linear scale (inset).
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Here “i” labels the unit cell index of the superlattice, and
there are two spin centers (labeled 1 and 2) in each
supercell. We calculate by the DFT in the LSDA (from
total-energy differences among different constrained spin
configurations) the exchange parameters JB (through the
B2-7AGNR segment) and JP (through the pristine 7AGNR
segment) as a function of the distance between the spin
centers, i.e., dB and dP, respectively. Figure 3(c) shows the
dependence of the exchange parameters on the distance. All
the calculated exchange interactions are positive, indicative
of an AFM coupling between the spins. Remarkably, the
exchange interaction energies can be as large as ∼5 meV,
even if the two spin centers are ∼2 nm apart. These highly
stable spin centers and their exchange interactions offer a
useful and tunable material platform to study novel
quantum spin effects in 1D [29]. For example, if such
an AFM chain of spins is placed on a superconductor, the
induced Shiba state bands may lead to the formation of
Majorana fermion states at the ends of the spin chains under
suitable conditions [30].
As a final remark, we point out that the end states of a

topologically nontrivial GNR are 0D counterparts of edge
or surface states of 2D or 3D topological insulators. As a
concrete example, the robustness of the GNR end states are
examined for the case of N ¼ 7 AGNR with a zigzag
termination (see Supplemental Material, Sec. IV [22]). In
this system, the end states persist against local perturbations
with changes in potential or hopping matrix elements up
to 4 eV.
In conclusion, we have explicitly demonstrated the

existence of symmetry-protected topological phases, junc-
tion states, and spin centers in AGNR systems. Our analysis
of these phenomena, which are heretofore unrecognized,
can be readily generalized to different forms of GNRs and
other quasi-1D systems with multiple occupied bands. For
example, we show that the chevron GNRs [11] and cove-
edged GNRs [31] (both recently synthesized), as well as
carbon nanotubes, all have interesting topological phases
protected by their spatial symmetries [32].
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